【題目】如圖1,正方形ABCD的一邊AB在直尺一邊所在直線MN上,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn),過點(diǎn)O作OE⊥MN于點(diǎn)E.
(1)如圖1,線段AB與OE之間的數(shù)量關(guān)系為 .(請(qǐng)直接填結(jié)論)
(2)保證點(diǎn)A始終在直線MN上,正方形ABCD繞點(diǎn)A旋轉(zhuǎn)θ(0<θ<90°),過點(diǎn) B作BF⊥MN于點(diǎn)F.
①如圖2,當(dāng)點(diǎn)O、B兩點(diǎn)均在直線MN右側(cè)時(shí),試猜想線段AF、BF與OE之間存在怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
②如圖3,當(dāng)點(diǎn)O、B兩點(diǎn)分別在直線MN兩側(cè)時(shí),此時(shí)①中結(jié)論是否依然成立呢?若成立,請(qǐng)直接寫出結(jié)論;若不成立,請(qǐng)寫出變化后的結(jié)論并證明.
③當(dāng)正方形ABCD繞點(diǎn)A旋轉(zhuǎn)到如圖4的位置時(shí),線段AF、BF與OE之間的數(shù)量關(guān)系為 .(請(qǐng)直接填結(jié)論)
【答案】(1)AB=2OE;(2)①AF+BF=2OE,證明見解析;②AF﹣BF=2OE 證明見解析;③BF﹣AF=2OE,
【解析】試題分析:(1)利用直角三角形斜邊的中線等于斜邊的一半即可得出結(jié)論;
(2)①過點(diǎn)B作BH⊥OE于H,可得四邊形BHEF是矩形,根據(jù)矩形的對(duì)邊相等可得EF=BH,BF=HE,根據(jù)正方形的對(duì)角線相等且互相垂直平分可得OA=OB,∠AOB=90°,再根據(jù)同角的余角相等求出∠AOE=∠OBH,然后利用“角角邊”證明△AOE和△OBH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得OH=AE,OE=BH,再根據(jù)AF-EF=AE,整理即可得證;
②過點(diǎn)B作BH⊥OE交OE的延長(zhǎng)線于H,可得四邊形BHEF是矩形,根據(jù)矩形的對(duì)邊相等可得EF=BH,BF=HE,根據(jù)正方形的對(duì)角線相等且互相垂直平分可得OA=OB,∠AOB=90°,再根據(jù)同角的余角相等求出∠AOE=∠OBH,然后利用“角角邊”證明△AOE和△OBH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得OH=AE,OE=BH,再根據(jù)AF-EF=AE,整理即可得證;
③同②的方法可證.
試題解析:(1)∵AC,BD是正方形的對(duì)角線,
∴OA=OC=OB,∠BAD=∠ABC=90°,
∵OE⊥AB,
∴OE=AB,
∴AB=2OE,
(2)①AF+BF=2OE
證明:如圖2,過點(diǎn)B作BH⊥OE于點(diǎn)H
∴∠BHE=∠BHO=90°
∵OE⊥MN,BF⊥MN
∴∠BFE=∠OEF=90°
∴四邊形EFBH為矩形
∴BF=EH,EF=BH
∵四邊形ABCD為正方形
∴OA=OB,∠AOB=90°
∴∠AOE+∠HOB=∠OBH+∠HOB=90°
∴∠AOE=∠OBH
∴△AEO≌△OHB(AAS)
∴AE=OH,OE=BH
∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.
②AF﹣BF=2OE
證明:如圖3,延長(zhǎng)OE,過點(diǎn)B作BH⊥OE于點(diǎn)H
∴∠EHB=90°
∵OE⊥MN,BF⊥MN
∴∠AEO=∠HEF=∠BFE=90°
∴四邊形HBFE為矩形
∴BF=HE,EF=BH
∵四邊形ABCD是正方形
∴OA=OB,∠AOB=90°
∴∠AOE+∠BOH=∠OBH+∠BOH
∴∠AOE=∠OBH
∴△AOE≌△OBH(AAS)
∴AE=OH,OE=BH,
∴AF﹣BF
=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE
③BF﹣AF=2OE,
如圖4,作OG⊥BF于G,則四邊形EFGO是矩形,
∴EF=GO,GF=EO,∠GOE=90°,
∴∠AOE+∠AOG=90°.
在正方形ABCD中,OA=OB,∠AOB=90°,
∴∠AOG+∠BOG=90°,
∴∠AOE=∠BOG.
∵OG⊥BF,OE⊥AE,
∴∠AEO=∠BGO=90°.
∴△AOE≌△BOG(AAS),
∴OE=OG,AE=BG,
∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,
∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,
∴BF﹣AF=2OE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有A、B兩種型號(hào)的客車共11輛,它們的載客量(不含司機(jī))、日租金、車輛數(shù)如下表所示,已知這11輛客車滿載時(shí)可搭載乘客350人.
A型客車 | B型客車 | |
載客量(人/輛) | 40 | 25 |
日租金(元/輛) | 320 | 200 |
車輛數(shù)(輛) | a | b |
(1)求a、b的值;
(2)某校七年級(jí)師生周日集體參加社會(huì)實(shí)踐,計(jì)劃租用A、B兩種型號(hào)的客車共6輛,且租車總費(fèi)用不超過1700元.
①最多能租用A型客車多少輛?
②若七年級(jí)師生共195人,寫出所有的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,延長(zhǎng)⊙O的直徑AB至點(diǎn)C,使得BC=AB,點(diǎn)P是⊙O上半部分的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與A、B重合),連結(jié)OP,CP.
(1)∠C的最大度數(shù)為 ;
(2)當(dāng)⊙O的半徑為3時(shí),△OPC的面積有沒有最大值?若有,說明原因并求出最大值;若沒有,請(qǐng)說明理由;
(3)如圖2,延長(zhǎng)PO交⊙O于點(diǎn)D,連結(jié)DB,當(dāng)CP=DB時(shí),求證:CP是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知的邊平行于軸,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)在第四象限,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn).
(1)若點(diǎn)在邊上,求點(diǎn)的坐標(biāo);
(2)若點(diǎn)在邊或上,點(diǎn)是與軸的交點(diǎn)如圖2,過點(diǎn)作軸的平行線過點(diǎn)作軸的平行線它們相交于點(diǎn),將沿直線翻折,當(dāng)點(diǎn)的對(duì)應(yīng)點(diǎn)落在坐標(biāo)軸上時(shí),求點(diǎn)的坐標(biāo).(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小華站在河岸上的G點(diǎn),看見河里有一小船沿垂直于岸邊的方向劃過來.此時(shí)測(cè)得小船C的俯角是∠FDC=30°.若小華的眼睛與地面的距離是米,BG=1.5米,BG平行于AC所在的直線,迎水坡i=4:3,坡長(zhǎng)AB=10米,點(diǎn)A、B、C、D、F、G在同一平面內(nèi),則此時(shí)小船C到岸邊的距離CA的長(zhǎng)是多少?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E為AD的中點(diǎn),延長(zhǎng)CE交BA的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=AF;
(2)若BC=2AB,∠BCD=100°,求∠ABE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是△ABC的內(nèi)心,AE的延長(zhǎng)線和△ABC的外接圓相交于點(diǎn)D,連接BD、BE、CE,若∠CBD=32°,則∠BEC的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為美化校園,某學(xué)校將要購進(jìn)A、B兩個(gè)品種的樹苗,已知一株A品種樹苗比一株B品種樹苗多20元,若買一株A品種樹苗和2株B品種樹苗共需110元.
(1)問A、B兩種樹苗每株分別是多少元?
(2)學(xué)校若花費(fèi)不超過4000元購入A、B兩種樹苗,已知A品種樹苗數(shù)量是B品種樹苗數(shù)量的一半,問此次至多購買B品種樹苗多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠加工一批零件,為了提高工人工作積極性,工廠規(guī)定每名工人每天薪金如下:生產(chǎn)的零件不超過a件,則每件3元,超過a件,超過部分每件b元,如圖是一名工人一天獲得薪金y(元)與其生產(chǎn)的件數(shù)x(件)之間的函數(shù)關(guān)系式,則下列結(jié)論錯(cuò)誤的( )
A.a=20
B.b=4
C.若工人甲一天獲得薪金180元,則他共生產(chǎn)45件.
D.人乙一天生產(chǎn)40(件),則他獲得薪金140元
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com