【題目】如圖,在三角形中,,,邊上的高,,點為邊上的一動點,,分別為點關于直線,的對稱點,連接,則線段長度的取值范圍是__________.

【答案】8.

【解析】

連接AP1AP2、AP,過點AAE于點E,由對稱性可知AP1=AP= AP2、△P1AP2是等腰直角三角形,進而即可得出=AP,再根據(jù)AP的取值范圍即可得出線段長的取值范圍.

連接AP1AP2、AP,過點AAE于點E,如圖所示。

∵點P關于直線AB,AC的對稱點分別為,

AP1=AP= AP2,∠AB=PAB,∠AC=PAC,

∴△P1AP2等腰直角三角形,

∴∠AE=45,

AE=E=A,=AP

,邊上的高,,,

AD=CD=6,BD=2,/span>

BC=

AP’⊥BC,

∴BP’=

∴AP’=

∴AP’APAB,

AP8

=AP,

8.

故答案為:8.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有下列結論:

;②;③;④

其中,正確結論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列五個命題:兩個端點能夠重合的弧是等弧;圓的任意一條弧必定把圓分成劣弧和優(yōu)弧兩部分經(jīng)過平面上任意三點可作一個圓;任意一個圓有且只有一個內接三角形三角形的外心到各頂點距離相等.其中真命題有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮和媽媽從家出發(fā)到長嘉匯觀看國慶燈光秀,媽媽先出發(fā),2分鐘后小亮沿同一路線出發(fā)去追媽媽,當小亮追上媽媽時發(fā)現(xiàn)相機落在途中了,媽媽立即返回找相機,小亮繼續(xù)前往長嘉匯,當小亮到達長嘉匯時,媽媽剛好找到了相機并立即前往長嘉匯(媽媽找相機的時間不計),小亮在長嘉匯等了一會,沒有等到媽媽,就沿同一路線返回接媽媽,最終與媽媽會合,小亮和媽媽的速度始終不變,如圖是小亮和媽媽兩人之間的距離y(米)與媽媽出發(fā)的時間x(分鐘)的圖象;則小亮開始返回時,媽媽離家的距離為_____米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,ADCD,垂足為D,AD交⊙O于點E,連接CE.

(1)判斷CD與⊙O的位置關系,并證明你的結論;

(2)E是弧AC的中點,⊙O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種飲料,平均每天可售出100箱,每箱利潤120元.為了擴大銷售,增加利潤,超市準備適當降價.據(jù)測算,若每箱降價1元,每天可多售出2箱.

1)如果要使每天銷售飲料獲利14000元,問每箱應降價多少元?

2)每箱降價多少元超市每天獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,輪船在A處觀測燈塔C位于北偏西70°方向上,輪船從A處以每小時20海里的速度沿南偏西50°方向勻速航行,1小時后到達碼頭B處,此時,觀測燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( 。

A. 10海里 B. 10 海里 C. 10海里 D. 20海里

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結果(紙牌可用A、B、C、D表示);

(2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線分別交軸,軸于、兩點,已知點坐標,點在直線上,橫坐標為,點軸正半軸上的一個動點,連結,以為直角邊在右側構造一個等腰,且.

1)求直線的解析式以及點坐標;

2)設點的橫坐標為,試用含的代數(shù)式表示點的坐標;

3)如圖2,連結,請直接寫出使得周長最小時,點的坐標.

查看答案和解析>>

同步練習冊答案