已知:關(guān)于x的一元二次方程x2-(1+2k)x+k2-2=0有兩個(gè)實(shí)數(shù)根.
(1)求k的取值范圍;
(2)當(dāng)k為負(fù)整數(shù)時(shí),拋物線y=x2-(1+2k)x+k2-2與x軸的交點(diǎn)是整數(shù)點(diǎn),求拋物線的解析式;
(3)若(2)中的拋物線與y軸交于點(diǎn)A,過A作x軸的平行線與拋物線交于點(diǎn)B,連接OB,將拋物線向上平移n個(gè)單位,使平移后得到的拋物線的頂點(diǎn)落在△OAB的內(nèi)部(不包括△OAB的邊界),求n的取值范圍.

解:(1)由題意得,(1+2k)2-4(k2-2)≥0,
解得,
K的取值范圍是

(2)k為負(fù)整數(shù),k=-2,-1.
當(dāng)k=-2時(shí),y=x2+3x+2與x軸的兩個(gè)交點(diǎn)是(-1,0)(-2,0)是整數(shù)點(diǎn),符合題意,
當(dāng)k=-1時(shí),y=x2+x-1與x軸的交點(diǎn)不是整數(shù)點(diǎn),不符合題意,
拋物線的解析式是y=x2+3x+2.

(3)由題意得,A(0,2),B(-3,2)
設(shè)OB的解析式為y=mx+2,解得
OB的解析式為,y=x2+3x+2的頂點(diǎn)坐標(biāo)是(,
OB與拋物線對稱軸的交點(diǎn)坐標(biāo)(,1),
直線AB與拋物線對稱軸的交點(diǎn)坐標(biāo)是(,2),
由圖象可知,n的取值范圍是,
分析:(1)根據(jù)一元二次方程有兩個(gè)實(shí)數(shù)根,求出根的判別式,即可求出k的取值范圍;
(2)根據(jù)(1)中求出的k的取值范圍,分別討論k=-2,k=-1時(shí)的情況,求出拋物線的解析式;
(3)由題意得,A(0,2),B(-3,2),設(shè)OB的解析式為y=mx+2,
點(diǎn)評:本題主要考查二次函數(shù)的綜合題的知識點(diǎn),解答本題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì)和函數(shù)圖象平移的知識,此題數(shù)形結(jié)合比較方便.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求證:方程①有兩個(gè)實(shí)數(shù)根;
(2)求證:方程①有一個(gè)實(shí)數(shù)根為1;
(3)設(shè)方程①的另一個(gè)根為x1,若m+n=2,m為正整數(shù)且方程①有兩個(gè)不相等的整數(shù)根時(shí),確定關(guān)于x的二次函數(shù)y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的條件下,把Rt△ABC放在坐標(biāo)系內(nèi),其中∠CAB=90°,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0),BC=5,將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在拋物線上時(shí),求△ABC平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:關(guān)于x的一元二次方程ax2+bx+c=3的一個(gè)根為x=2,且二次函數(shù)y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點(diǎn)坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程x2-2(m+1)x+m2=0有兩個(gè)整數(shù)根,m<5且m為整數(shù).
(1)求m的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=x2-2(m+1)x+m2的圖象沿x軸向左平移4個(gè)單位長度,求平移后的二次函數(shù)圖象的解析式;
(3)當(dāng)直線y=x+b與(2)中的兩條拋物線有且只有三個(gè)交點(diǎn)時(shí),求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程x2-2x+c=0的一個(gè)實(shí)數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當(dāng)-2<x≤2時(shí),y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點(diǎn)A、B(A左B右),頂點(diǎn)為點(diǎn)C,問:是否存在這樣的點(diǎn)P,以P為位似中心,將△ABC放大為原來的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點(diǎn)D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•延慶縣二模)已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實(shí)根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時(shí)方程的兩個(gè)根;
(3)在(2)的前提下,二次函數(shù)y=mx2-(2m+2)x+m-1與x軸有兩個(gè)交點(diǎn),連接這兩點(diǎn)間的線段,并以這條線段為直徑在x軸的上方作半圓P,設(shè)直線l的解析式為y=x+b,若直線l與半圓P只有兩個(gè)交點(diǎn)時(shí),求出b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案