【題目】如圖,△ABC中,DE∥AB,EF∥AB,∠BED=∠CEF,
(1)試說明△ABC是等腰三角形,
(2)探索AB+AC與四邊形ADEF的周長關系.
【答案】(1)說明見解析;(2)AC+AB=四邊形EFAD的周長.
【解析】
試題分析:(1)由平行線的性質可得∠EAD=∠F,∠BAF=∠E,進而再通過角之間的轉化得出結論;
(2)由平行線的性質可得∠EAD=∠F,∠BAF=∠E,由于∠BED=∠CEF,得到∠C=∠CEF=∠BED=∠B,于是得到EF=CF,DE=DB,即可得到結論.
試題解析:(1)∵DE∥AC
∴∠BED=∠C,
∵EF∥AB,
∴∠CEF=∠B,
∵∠BED=∠CEF,
∴∠B=∠C,
∴△ABC是等腰三角形;
(2)AB+AC=四邊形ADEF的周長,
理由:∵DE∥AC,
∴∠BED=∠C,
∵EF∥AB,
∴∠CEF=∠B,
∵∠BED=∠CEF,
∴∠C=∠CEF=∠BED=∠B,
∴EF=CF,DE=DB,
∴AC+AB=CF+AF+AD+BD=EF+AF+AD+DE=四邊形EFAD的周長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y=(m為常數(shù),且m≠0)的圖象交于點A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結OA、OB,求△AOB的面積;
(3)直接寫出當y1<y2<0時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題
如圖,在6×6的正方形網(wǎng)格中,每個小正方形的邊長都為1.請在所給網(wǎng)格中按下列要求畫出圖形.
(1)從點A出發(fā)的一條線段AB,使它的另一個端點落在格點(即小正方形的頂點)上,且長度為;
(2)以(1)中的AB為邊的一個等腰三角形ABC,使點C在格點上,且另兩邊的長都是無理數(shù);
(3)畫出△ABC關于點B的中心對稱圖形△A1B1C1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果∠A和∠B是兩平行直線中的同旁內角,且∠A比∠B的2倍少30,則∠B的度數(shù)是( )
A.30
B.70
C.110
D.30或70
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com