【題目】如圖,點(diǎn)D、E分別是AB、AC上的點(diǎn),BECD于點(diǎn)O,BO=CODO=EO,AB=ACAD=AE則圖中有___________對(duì)全等三角形( )

A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)

【答案】B

【解析】

SAS證明BOD≌△COE得出BD=CE,再由SSS證明△BDC≌△CEB,SAS證明△ABE≌△ACD即可得出結(jié)論

BO=CO,∠BOD=∠COE,DO=EO,∴△BOD≌△COE;

∵△BOD≌△COE,∴BD=CE

BO=CO,DO=EO,∴BE=CD

BD=CEBC=CB,CD=BE,∴△BDC≌△CEB;

AB=AC,∠A=∠AAE=AD,∴△ABE≌△ACD

故有3對(duì)全等三角形

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(A類)已知如圖,四邊形ABCD中,AB=BC,AD=CD,求證:∠A=C.

(B類)已知如圖,四邊形ABCD中,AB=BC,A=C,求證:AD=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=6,BC=8,AB=10

(1)尺規(guī)作圖:作AD平分∠CAB,交BC于點(diǎn)D;

(2)求CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題:

(1)已知,如圖1,ABC中,P點(diǎn)是∠ABC和∠ACB的角平分線的交點(diǎn),求證:∠P=A+90°。

(2)如圖2,若P點(diǎn)是∠ABC和∠ACB外角的角平分線的交點(diǎn),∠A=80°,那么∠P=____°;

(3)如圖3,ABC中,若P點(diǎn)是∠ABC外角和∠ACB外角的角平分線的交點(diǎn),∠A=,那么∠P=________(請(qǐng)用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求拋物線的解析式
(1)已知拋物線的頂點(diǎn)為(﹣1,﹣3),與y軸的交點(diǎn)為(0,﹣5),求拋物線的解析式.
(2)求經(jīng)過A(1,4),B(﹣2,1)兩點(diǎn),對(duì)稱軸為x=﹣1的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個(gè)問題:探究函數(shù)y= x2+ 的圖象與性質(zhì).
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y= x2+ 的圖象與性質(zhì)進(jìn)行了探究.
下面是小東的探究過程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y= x2+ 的自變量x的取值范圍是
(2)下表是y與x的幾組對(duì)應(yīng)值.

x

﹣3

﹣2

﹣1

1

2

3

y

m

求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1, ),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,并解決問題:

(1)如圖(1),等邊ABC內(nèi)有一點(diǎn)P若點(diǎn)P到頂點(diǎn)A,B,C的距離分別為3,4,5欲求∠APB的度數(shù),由于PA,PB不在一個(gè)三角形中,為了解決本題我們可以將ABP繞頂點(diǎn)A旋轉(zhuǎn)到ACP′處,此時(shí)ACP′≌△ABP這樣,就可以利用全等三角形知識(shí),將三條線段的長(zhǎng)度轉(zhuǎn)化到一個(gè)三角形中從而求出∠APB的度數(shù).

請(qǐng)將下列解題過程補(bǔ)充完整。

∵△ACP′≌△ABP,

AP′=  =3,CP′=   =4,   =APB.

由題意知旋轉(zhuǎn)角∠PA P′=60°,∴△AP P′    三角形,

P P′=AP=3,A P′P=60°。

易證P P′C為直角三角形,且∠P P′C=90°,

∴∠APB=AP′C=A P′P+P P′C=    °+   °=   °.

請(qǐng)你利用第(1)題的解答思想方法,解答下面問題:

已知如圖(2),ABC中,∠CAB=90°,AB=AC,E、FBC上的點(diǎn)且∠EAF=45°,

求證:EF2=BE2+FC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,CDAB邊上的高,AC=4,BC=3,DB=

求:(1)求AD的長(zhǎng);

(2)△ABC是直角三角形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課堂上學(xué)習(xí)了勾股定理后,知道勾三、股四、弦五.王老師給出一組數(shù)讓學(xué)生觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,學(xué)生發(fā)現(xiàn)這些勾股 數(shù)的勾都是奇數(shù),且從 3 起就沒有間斷過,于是王老師提出以下問題讓學(xué)生解決.

(1)請(qǐng)你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):11、________、________;

(2)若第一個(gè)數(shù)用字母a(a為奇數(shù),且a≥3)表示,那么后兩個(gè)數(shù)用含a的代數(shù)式分別怎么表示?小明發(fā)現(xiàn)每組第二個(gè)數(shù)有這樣的規(guī)律4=,12=,24=……,于是他很快表示了第二數(shù)為 ,則用含a的代數(shù)式表示第三個(gè)數(shù)為________;

(3)用所學(xué)知識(shí)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案