【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90度,AC將梯形分成兩個三角形,其中△ACD是周長為18cm的等邊三角形,則該梯形的中位線的長是( 。
A. 9cm B. 12cm C. cm D. 18cm
科目:初中數學 來源: 題型:
【題目】如圖,在規(guī)格為8×8的邊長為1個單位的正方形網格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.
(1)畫出△ABC關于直線n的對稱圖形△A′B′C′;
(2)直線m上存在一點P,使△APB的周長最;
①在直線m上作出該點P;(保留畫圖痕跡)
②△APB的周長的最小值為 .(直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點D從點O出發(fā),沿OM的方向以1cm/s的速度運動,當D不與點A重合時,將△ACD繞點C逆時針方向旋轉60°得到△BCE,連接DE.
(1)求證:△CDE是等邊三角形(下列圖形中任選其一進行證明);
(2)如圖2,當點D在射線OM上運動時,是否存在以D,E,B為頂點的三角形是直角三角形?若存在,求出運動時間t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=2x﹣4的圖象分別交x、y軸于點A、B,將直線AB繞點B按順時針方向旋轉45°,交x軸于點C,則直線BC的函數表達式是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 小明遇到這樣一個問題
如圖1,△ABC中,∠ACB=90°,點D在AB上,且BD=BC,求證:∠ABC=2∠ACD.
小明發(fā)現,除了直接用角度計算的方法外,還可以用下面兩種方法:
方法2:如圖2,作BE⊥CD,垂足為點E.
方法3:如圖3,作CF⊥AB,垂足為點F.
根據閱讀材料,從三種方法中任選一種方法,證明∠ABC=2∠ACD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 在等腰Rt△ABC中,∠C=90°,AC=BC,點M,N分別是邊AB,BC上的動點,△BMN與△B′MN關于直線MN對稱,點B的對稱點為B′.
(1)如圖1,當B′在邊AC上時,若∠CNB′=25°,求∠AMB′的度數;
(2)如圖2,當∠BMB′=30°且CN=MN時,若CMBC=2,求△AMC的面積;
(3)如圖3,當M是AB邊上的中點,B′N交AC于點D,若B′N∥AB,求證:B′D=CN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在扇形OAB中,∠AOB=110°,半徑OA=18,將扇形OAB沿過點B的直線折疊,點O恰好落在弧AB上的點D處,折痕交OA于點C,則弧AD的長為( 。
A. 2π B. 3π C. 4π D. 5π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現代互聯網技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數分別為10萬件和12.1萬件.現假定該公司每月投遞的快遞總件數的增長率相同.
(1)求該快遞公司投遞快遞總件數的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現有的21名快遞投遞業(yè)務員能否完成2017年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com