【題目】列方程解應用題:某商場經市場調查,預計一款夏季童裝能獲得市場青睞,便花費15000元購進了一批此款童裝,上市后很快售罄.該店決定繼續(xù)進貨,由于第二批進貨數(shù)量是第一批進貨數(shù)量的2倍,因此單價便宜了10元,購進第二批童裝一共花費了27000元.那該店所購進的第一批童裝的價格是多少元?

【答案】100元

【解析】

設該店所購進的第一批童裝的單價是x/件,則該店所購進的第二批童裝的單價是(x-10)元/件,根據數(shù)量=總價÷單價結合于第二批進貨數(shù)量是第一批進貨數(shù)量的2倍,即可得出關于x的分式方程,解之經檢驗后即可得出結論.

解:設該店所購進的第一批童裝的價格是x元/件,則購進的第二批童裝的價格是(x10)元/件.

根據題意,得

解得x100

經檢驗,x100是原分式方程的解且符合題意.

答:該店所購進的第一批童裝的價格是100元/件.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】 下圖是某學校全體教職工年齡的頻數(shù)分布直方圖(統(tǒng)計中采用“上限不在內”的原則,如年齡為36歲統(tǒng)計在36≤x<38小組,而不在34≤x<36小組),根據圖形提供的信息,下列說法中錯誤的是

A.該學校教職工總人數(shù)是50人

B.年齡在40≤x<42小組的教職工人數(shù)占該學?側藬(shù)的20%

C.教職工年齡的中位數(shù)一定落在40≤x<42這一組

D.教職工年齡的眾數(shù)一定在38≤x<40這一組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,AB=BC=4,把ABC沿AC翻折得到ADC.則

(1)四邊形ABCD是 形;

(2)若B=120°,點P、E、F分別為線段AC、AD、DC上的任意1點,則PE+PF的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)的圖象過點

求該函數(shù)的解析式;

過點分別向軸和軸作垂線,垂足為,求四邊形的面積;

求證:過此函數(shù)圖象上任意一點分別向軸和軸作垂線,這兩條垂線與兩坐標軸所圍成矩形的面積為定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,使ΔABCΔADC成立的條件是(

A.AB=AD,∠B=DB.AB=AD,∠ACB=ACD

C.BC=DC,∠BAC=DACD.AB=AD,∠BAC=DAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC中,點P為BC邊中點,直線a繞頂點A旋轉,若點B,P在直線a的異側,BM⊥直線a于點M.CN⊥直線a于點N,連接PM,PN.

(1)延長MP交CN于點E(如圖②).

①求證:△BPM≌△CPE;

②求證:PM=PN;

(2)若直線a繞點A旋轉到圖③的位置時,點B,P在直線a的同側,其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;

(3)若直線a繞點A旋轉到與BC邊平行的位置時,其它條件不變,請直接判斷四邊形MBCN的形狀及此時PM=PN還成立嗎?不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列的解答過程,然后再解答:

形如的化簡,只要我們找到兩個正數(shù)a、b,使a+bmabn,使得,,那么便有:ab

例如:化簡

解:首先把化為,這里m7,n12,由于4+37,4×312

,

=

1)填空:   ,   ;

2)化簡:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小馬、小虎兩人共同計算一道題:(x+a)(2x+b).由于小馬抄錯了a的符號,得到的結果是2x27x+3,小虎漏抄了第二個多項式中x的系數(shù)得到的結果是x2+2x3

1)求a,b的值;

2)細心的你請計算這道題的正確結果;

3)當x=﹣1時,計算(2)中的代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形 ABCD 中,AB5,AD13,點 E BC 上一點,將ABE沿 AE 折疊,使點 B 落在長方形內點 F 處,連接 DF DF12

1)試說明:ADF 是直角三角形;

2)求 BE 的長.

查看答案和解析>>

同步練習冊答案