如圖1,在平面內取一點O,過點O作兩條夾角為60°的數軸,使它們以點O為公共原點且具有相同的單位長度,這樣在平面內建立的坐標系稱為斜坐標系,我們把水平放置的數軸稱為橫軸(記作a軸),將斜向放置的數軸稱為斜軸(記作b軸).類似
于直角坐標系,對于斜坐標平面內的任意一點P,過點P分別作b軸、a軸的平行線交a軸、b軸于點M、N,若點M、N分別在a軸、b軸上所對應的實數為m與n,則稱有序實數對(m,n)為點P的坐標.可知建立了斜坐標系的平面內任意一個點P與有序實數對(m,n)之間是相互唯一確定的.
(1)請寫出圖2(其中虛線均平行于a軸或b軸)中點P的坐標,并在圖中標出點Q(2,-3);
(2)如圖3(其中虛線均平行于a軸或b軸),在斜坐標系中點A(1,4)、B(1,-1)、C(6,-1).
①判斷△ABC的形狀,并簡述理由;
②如果點D在邊BC上,且其坐標為(2.5,-1),試問:在邊BC上是否存在點E使△ACE與△ABD相全等?如有,請寫出點E的坐標,并說明它們全等的理由;如沒有,請說明理由.