設a=
22
,則a3-a2=(  )
分析:先根據(jù)算術平方根的定義求出a的值,再根據(jù)實數(shù)混合運算的法則進行計算即可.
解答:解:∵a=
22

∴a=2,
∴原式=23-22=22×(2-1)=4×1=4.
故選B.
點評:本題考查的是實數(shù)的運算,熟知實數(shù)混合運算的法則是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列解題過程,借鑒其中一種方法解答后面給出的試題:
問題:某人買13個雞蛋,5個鴨蛋、9個鵝蛋共用去了9.25元;買2個雞蛋,4個鴨蛋、3個鵝蛋共用去了3.20元.試問只買雞蛋、鴨蛋、鵝蛋各一個共需多少元.
分析:設買雞蛋,鴨蛋、鵝蛋各一個分別需x、y、z元,則需要求x+y+z的值.由題意,知
13x+5y+9z=9.25---(1)
2x+4y+3z=3.20----(2)
;
視x為常數(shù),將上述方程組看成是關于y、z的二元一次方程組,化“三元”為“二元”、化“二元”為“一元”從而獲解.
解法1:視x為常數(shù),依題意得
5y+9z=9.25-13x---(3)
4y+3z=3.20-2x----(4)

解這個關于y、z的二元一次方程組得
y=0.05+x
z=1-2x

于是x+y+z=x+0.05+x+1-2x=1.05.
評注:也可以視z為常數(shù),將上述方程組看成是關于x、y的二元一次方程組,解答方法同上,你不妨試試.
分析:視x+y+z為整體,由(1)、(2)恒等變形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
解法2:設x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下關于a、b的二元一次方
程組
5a+4b=9.25---(5)
4a-b=3.20----(6)

由⑤+4×⑥,得21a+22.05,a=1.05.
評注:運用整體的思想方法指導解題.視x+y+z,2x+z為整體,令a=x+y+z,b=2x+z,代入①、②將原方程組轉化為關于a、b的二元一次方程組從而獲解.
請你運用以上介紹的任意一種方法解答如下數(shù)學競賽試題:
購買五種教學用具A1、A2、A3、A4、A5的件數(shù)和用錢總數(shù)列成下表:
精英家教網(wǎng)
那么,購買每種教學用具各一件共需多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4…=A2n-1A2n=1,過A1、A3、A5…A2n-1分別作x軸的垂線與反比例函數(shù)y=
2
x
的圖象交于點B1、B3、B5…B2n-1,與反比例函數(shù)y=
4
x
的圖象交于點C1、C3、C5、…C2n-1,并設△OB1C1與△B1C1A2合并成的四邊形的面積為S1,△A2B2C3與△B2C3A4合并成的四邊形的面積為S2…,以此類推,△A2n-2BnCn與△BnCnA2n合并成的四邊形的面積為Sn,則S1=
2
2
1
s1
+
1
s2
+
1
s3
+…+
1
sn
=
n2
2
n2
2
.(n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)觀察一列數(shù)a1=3,a2=9,a3=27,a4=81,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是
3
3
;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個數(shù)列的第n項,那么a6=
36
36
,an=
3n
3n
;(可用冪的形式表示)
(2)如果想要求1+2+22+23+…+29的值,可令S10=1+2+22+23+…+29①將①式兩邊同乘以2,得
2S10=2+22+23+…+29+210
2S10=2+22+23+…+29+210
②,由②減去①式,得S10=
210-1
210-1

(3)若(1)中數(shù)列共有30項,設S30=3+9+27+81+…+a30,請利用上述規(guī)律和方法計算S30的值.
(4)設一列數(shù)1,2,4,8,…,2n-1的和為Sn,則Sn的值為
2n-1
2n-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)觀察一列數(shù)a1=3,a2=9,a3=27,a4=81,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是
3
3
;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個數(shù)列的第n項,那么a6=
36
36
,an=
3n
3n
;(可用冪的形式表示)
(2)如果想要求1+2+22+23+…+210的值,可令S10=1+2+22+23+…+210①將①式兩邊同乘以2,得
2S10=2+22+23+…+210+211
2S10=2+22+23+…+210+211
②,由②減去①式,得S10=
211-1
211-1

(3)若(1)中數(shù)列共有20項,設S20=3+9+27+81+…+a20,請利用上述規(guī)律和方法計算S20的值.
(4)設一列數(shù)1,
1
2
,
1
4
,
1
8
,…,
1
2n-1
的和為Sn,則Sn的值為
2-
1
2n-1
2-
1
2n-1

查看答案和解析>>

同步練習冊答案