【題目】已知AB∥CD,AM平分∠BAP,CM平分∠PCD.
(1)如圖①,當(dāng)點(diǎn)P、M在直線(xiàn)AC同側(cè),∠AMC=60°時(shí),求∠APC的度數(shù);
(2)如圖②,當(dāng)點(diǎn)P、M在直線(xiàn)AC異側(cè)時(shí),直接寫(xiě)出∠APC與∠AMC的數(shù)量關(guān)系.
【答案】(1)∠APC=120°;(2)∠APC=360°﹣2∠AMC.
【解析】
(1)延長(zhǎng)AP交CD于點(diǎn)Q, 連接MP并延長(zhǎng)到點(diǎn)R,根據(jù)角度關(guān)系推算即可.
(2) 過(guò)P作PQ∥AB于Q,MN∥AB于N,根據(jù)角度關(guān)系推算即可.
解:(1)如圖1,延長(zhǎng)AP交CD于點(diǎn)Q,則可得到∠BAP=∠AQC,
則∠APC=∠BAP+∠DCP=2(∠MAP+∠MCP),
連接MP并延長(zhǎng)到點(diǎn)R,則可得∠APR=∠MAP+∠AMP,∠CPR=∠MCP+∠CMP,
所以∠APC=∠AMC+∠MAP+∠MCP,
所以∠APC=∠AMC+∠APC,
所以∠APC=2∠AMC=120°.
(2)如圖2,過(guò)P作PQ∥AB于Q,MN∥AB于N,
則AB∥PQ∥MN∥CD,
∴∠APQ=180°﹣∠BAP,∠CPQ=180°﹣∠DCP,∠AMN=∠BAM,∠CMN=∠DCM,
∵AM平分∠BAP,CM平分∠PCD,
∴∠BAP=2∠BAM,∠DCP=2∠DCM,
∴∠APC=∠APQ+∠CPQ=180°﹣∠BAP+180°﹣∠DCP=360°﹣2(∠BAM+∠DCM)=360°﹣2(∠BAM+∠DCM)=360°﹣2∠AMC,即∠APC=360°﹣2∠AMC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy(如圖),拋物線(xiàn)y=﹣x2+2mx+3m2(m>0)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱(chēng)軸為直線(xiàn)l,過(guò)點(diǎn)C作直線(xiàn)l的垂線(xiàn),垂足為點(diǎn)E,聯(lián)結(jié)DC、BC.
(1)當(dāng)點(diǎn)C(0,3)時(shí),
①求這條拋物線(xiàn)的表達(dá)式和頂點(diǎn)坐標(biāo);
②求證:∠DCE=∠BCE;
(2)當(dāng)CB平分∠DCO時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校八年級(jí)開(kāi)展英語(yǔ)拼寫(xiě)大賽,一班和二班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)?nèi)鐖D所示:
(1)根據(jù)圖示填寫(xiě)下表
班級(jí) | 中位數(shù)(分) | 眾數(shù)(分) | 平均數(shù)(分) |
一班 | 85 | ||
二班 | 100 | 85 |
(2)結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)比較好?
(3)已知一班的復(fù)賽成績(jī)的方差是70,請(qǐng)求出二班復(fù)試成績(jī)的方差,并說(shuō)明哪個(gè)班成績(jī)比較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】撫順某中學(xué)為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí).請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測(cè)試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;
(3)若該中學(xué)八年級(jí)共有700名學(xué)生,請(qǐng)你估計(jì)該中學(xué)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名?
(4)若從體能為A等級(jí)的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對(duì)象,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x﹣2交x軸于點(diǎn)A,交y軸于點(diǎn)B,若直線(xiàn)BC交x軸于點(diǎn)C,且∠ABC=45°,則點(diǎn)C的橫坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)專(zhuān)賣(mài)店銷(xiāo)售A,B兩種型號(hào)的新能源汽車(chē).上周售出1輛A型車(chē)和3輛B型車(chē),銷(xiāo)售額為96萬(wàn)元;本周已售出2輛A型車(chē)和1輛B型車(chē),銷(xiāo)售額為62萬(wàn)元.
(1)求每輛A型車(chē)和B型車(chē)的售價(jià)各為多少萬(wàn)元?
(2)甲公司擬向該店購(gòu)買(mǎi)A,B兩種型號(hào)的新能源汽車(chē)共6輛,且A型號(hào)車(chē)不少于2輛,購(gòu)車(chē)費(fèi)不少于130萬(wàn)元,則有哪幾種購(gòu)車(chē)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊△ABC中,點(diǎn)D在BC邊的延長(zhǎng)線(xiàn)上,CE平分∠ACD,且CE=BD.判斷△ADE的形狀,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論:
①△ABG≌△AFG;② BG=GC;③ AG∥CF;④∠GAE=45°.
則正確結(jié)論的個(gè)數(shù)有( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片,,,點(diǎn)在邊上,將沿折疊,點(diǎn)落在處,分別交于點(diǎn),且,則長(zhǎng)為__________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com