【題目】如圖,在平面魚角坐標(biāo)系xOy中,A(﹣3,0),點(diǎn)By軸正半軸上一點(diǎn),將線段AB繞點(diǎn)B旋轉(zhuǎn)90°至BC處,過點(diǎn)CCD垂直x軸于點(diǎn)D,若四邊形ABCD的面積為36,則線AC的解析式為_____

【答案】yx+1y=﹣3x9

【解析】

CCEOBE,則四邊形CEOD是矩形,得到CEOD,OECD,根據(jù)旋轉(zhuǎn)的性質(zhì)得到ABBC,∠ABC90°,根據(jù)全等三角形的性質(zhì)得到BOCEBEOA,求得OABE3,設(shè)ODa,得到CDOE|a3|,根據(jù)面積公式列方程得到C(﹣69)或(6,3),設(shè)直線AB的解析式為ykx+b,把A點(diǎn)和C點(diǎn)的坐標(biāo)代入即可得到結(jié)論.

解:過CCEOBE,

則四邊形CEOD是矩形,

CEOD,OECD,

∵將線段AB繞點(diǎn)B旋轉(zhuǎn)90°BC處,

ABBC,

ABC90°,

∴∠ABO+CBO=∠CBO+BCE90°,

∴∠ABO=∠BCE,

∵∠AOB=∠BEC90°,

∴△ABO≌△BCOAAS),

BOCE,BEOA

A(﹣3,0),

OABE3,

設(shè)ODa,

CDOE|a3|

∵四邊形ABCD的面積為36,

AOOB+CD+OBOD×3×a+a3+a×a36

a±6,

C(﹣69)或(6,3),

設(shè)直線AB的解析式為ykx+b,

A點(diǎn)和C點(diǎn)的坐標(biāo)代入得,

解得: ,

∴直線AB的解析式為y=﹣3x9

故答案為:y=﹣3x9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線是常數(shù))經(jīng)過點(diǎn)

)求該拋物線的解析式和頂點(diǎn)坐標(biāo).

)拋物線與軸另一交點(diǎn)為點(diǎn),與軸交于點(diǎn),平行于軸的直線與拋物線交于點(diǎn), ,與直線交于點(diǎn)

①求直線的解析式.

②若,結(jié)合函數(shù)的圖像,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探尋勾股數(shù):直角三角形三邊長是整數(shù)時(shí)我們稱之為勾股數(shù),勾股數(shù)有多少?勾股數(shù)有規(guī)律嗎?

1)請(qǐng)你寫出兩組勾股數(shù).

2)試構(gòu)造勾股數(shù).構(gòu)造勾股數(shù)就是要尋找3個(gè)正整數(shù),使他們滿足兩個(gè)數(shù)的平方和(或差)等于第三數(shù)的平方,即滿足以下形式:

   2+   2   2;或②   2   2   2

③要滿足以上①、②的形式,不妨從乘法公式入手.我們已經(jīng)知道③(x+y2﹣(xy24xy.如果等式③右邊也能寫成   2的形式,就能符合②的形式.

因此不妨設(shè)xm2,yn2,(m、n為任意正整數(shù),mn),請(qǐng)你寫出含m、n的這三個(gè)勾股數(shù)并證明它們是勾股數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線上部分點(diǎn)的橫坐標(biāo), 縱坐標(biāo)的對(duì)應(yīng)值如下表:

0

1

2

0

4

6

6

4

從上表可知,下列說法正確的是

①拋物線與軸的一個(gè)交點(diǎn)為;、趻佄锞與軸的交點(diǎn)為;

③拋物線的對(duì)稱軸是:直線;   在對(duì)稱軸左側(cè)增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB、CD在同一直線上,ABCD,DEAF,若要使△ACF≌△DBE,則還需要補(bǔ)充一個(gè)條件:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖線段ABCD表示兩面鏡子,且直線AB∥直線CD,光線EF經(jīng)過鏡子AB反射到鏡予CD,最后反射到光線GH.光線反射時(shí),∠1=2,∠3=4,下列結(jié)論:①直線EF平行于直線GH;②∠FGH的角平分線所在的直線垂直于直線AB;③∠BFE的角平分線所在的直線垂直于∠4的角平分線所在的直線;④當(dāng)CD繞點(diǎn)G順時(shí)針旋轉(zhuǎn)90時(shí),直線EF與直線GH不一定平行,其中正確的是(

A. ①②③④B. ①②③C. ②③D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF翻折,點(diǎn)A恰好落在BC邊的A′處,若AB= EFA=60°,則四邊形A′B′EF的周長是(

A. 1+3 B. 3+ C. 4+ D. 5+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于AB的長為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.若ADC的周長為10,AB=7,則ABC的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在長方形ABCD中,將ABE沿著AE折疊至AEF的位置,點(diǎn)F在對(duì)角線AC上,若BE=3,EC=5,則線段CD的長是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案