【題目】如圖,在梯形ABCD中, ,,求DC的長.
【答案】解:如圖
過A作AE⊥BC于E,過D作DF⊥BC于F,
則∠AEF=∠DFE=∠DFC=∠AEB=90°,AE∥DF,
∵AD∥BC,
∴四邊形AEFD是矩形,
∴AE=DF,AD=EF= ,
在Rt△BAC中,∠B=45°,BC= ,
∴∠ACB=45°=∠B,
∴AB=AC,
由勾股定理得:AB=AC=4,
△BAC的面積S=AB×AC=BC×AE,
∴AE=
DF=AE= ,
∵AB=AC,AE⊥BC,
∴BE=CE=BC=,
∴CF=-= ,
在Rt△DFC中,DF=,CF= , 由勾股定理得:CD=
【解析】過A作AE⊥BC于E,過D作DF⊥BC于F,得出矩形AEFD,求出AE=DF,AD=EF,求出AE、EC的長,求出CF長,即可求出答案.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等腰直角三角形(等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、C分別為坐標(biāo)軸上上的三個點(diǎn),且OA=1,OB=3,OC=4,
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)M為該拋物線上一動點(diǎn),在(2)的條件下,請求出當(dāng)|PM﹣AM|的最大值時點(diǎn)M的坐標(biāo),并直接寫出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx的圖象經(jīng)過點(diǎn)(2,0)、(﹣1,6).
(1)求二次函數(shù)的解析式;
(2)畫出它的圖象;
(3)寫出它的對稱軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題:
(1)11-1-1+4;
(2)(-22.84)-(+38.57)+(-37.16)-(-32.57);
(3)1-+2+-4;
(4)(-36)-(-28)+(+125)+(-4)-(+53)-(-40).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在梯形ABCD中,AD∥BC,對角線AC和BD交于點(diǎn)O,下列條件中,能判斷梯形ABCD是等腰梯形的是( )
A.∠BDC =∠BCD
B.∠ABC =∠DAB
C.∠ADB =∠DAC
D.∠AOB =∠BOC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,,,點(diǎn)在邊上以每秒的速度從點(diǎn)向點(diǎn)運(yùn)動,點(diǎn)在邊上,以每秒的速度從點(diǎn)出發(fā),在間往返運(yùn)動,兩個點(diǎn)同時出發(fā),當(dāng)點(diǎn)到達(dá)點(diǎn)時停止(同時點(diǎn)也停止).設(shè)運(yùn)動時間為秒,當(dāng)為何值時,以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB中,AB⊥OB,且AB=OB=3,設(shè)直線x=t截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在⊙O中. AE直徑,AD是弦,B為AE延長線上--點(diǎn),作BC⊥AD,與AD延長線交于點(diǎn)C.且∠CBD=∠A.
(1)判斷直線BD與⊙0的位置關(guān)系,并證明你的結(jié)論;
(2)若∠A=30 ,OA=6,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com