【題目】如圖,已知CD平分∠ACB,∠1=∠2.
(1)求證:DE∥AC;
(2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).
【答案】(1)詳見解析;(2)95°.
【解析】
(1)先根據(jù)角平分線的定義得出∠2=∠3,再由∠1=∠2可得出∠1=∠3,進(jìn)而可得出結(jié)論;
(2)根據(jù)∠3=30°可得出∠ACB的度數(shù),再由平行線的性質(zhì)得出∠BED的度數(shù),由三角形內(nèi)角和定理即可得出結(jié)論.
(1)證明:∵CD平分∠ACB,
∴∠2=∠3.
∵∠1=∠2,
∴∠1=∠3,
∴DE∥AC;
(2)解:∵CD平分∠ACB,∠3=30°,
∴∠ACB=2∠3=60°.
∵DE∥AC,
∴∠BED=∠ACB=60°.
∵∠B=25°,
∴∠BDE=180°-60°-25°=95°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在數(shù)軸上點(diǎn)A,點(diǎn)B對(duì)應(yīng)的數(shù)分別是6,﹣6,∠DCE=90°(點(diǎn)C與點(diǎn)O重合,點(diǎn)D在數(shù)軸的正半軸上)
(1)如圖1,若CF平分∠ACE,則∠AOF= 度;點(diǎn)A與點(diǎn)B的距離=
(2)如圖2,將∠DCE沿?cái)?shù)軸的正半軸向右平移t(0<t<3)個(gè)單位后,再繞點(diǎn)頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時(shí)記∠DCF=α.
①當(dāng)t=1時(shí),α= ;點(diǎn)B與點(diǎn)C的距離=
②猜想∠BCE和α的數(shù)量關(guān)系,并說明理由;
(3)如圖3,開始∠D1C1E1與∠DCE重合,將∠DCE沿?cái)?shù)軸的正半軸向右平移t(0t3)個(gè)單位,再繞點(diǎn)頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時(shí)記∠DCF=α,與此同時(shí),將∠D1C1E1沿?cái)?shù)軸的負(fù)半軸向左平移t(0t3)個(gè)單位,再繞點(diǎn)頂點(diǎn)C1順時(shí)針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1=β,若α與β滿足|α﹣β|=20°,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線l分別交AB、CD與E、F兩點(diǎn),且AB∥CD.
(1) 說明:∠1=∠2;
(2) 如圖2,點(diǎn)M、N在AB、CD之間,且在直線l左側(cè),若∠EMN+∠FNM=260°,
①求:∠AEM+∠CFN的度數(shù);
②如圖3,若EP平分∠AEM,FP平分∠CFN,求∠P的度數(shù);
(3) 如圖4,∠2=80°,點(diǎn)G在射線EB上,點(diǎn)H在AB上方的直線l上,點(diǎn)Q是平面內(nèi)一點(diǎn),連接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接寫出∠GQH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC底邊BC的長(zhǎng)為4cm,面積為12cm,腰AB的垂直平分線交AB于點(diǎn)E,若點(diǎn)D為BC邊的中點(diǎn),M為線段EF上一動(dòng)點(diǎn),則△BDM的周長(zhǎng)最小值為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,連接BC.
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)P為線段BC上一點(diǎn)(不與B,C重合),PM∥y軸,且PM交拋物線于點(diǎn)M,交x軸于點(diǎn)N,當(dāng)△BCM的面積最大時(shí),求△BPN的周長(zhǎng);
(3)在(2)的條件下,當(dāng)△BCM的面積最大時(shí),在拋物線的對(duì)稱軸上存在一點(diǎn)Q,使得△CNQ為直角三角形,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,點(diǎn)F為BC的中點(diǎn),連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)D′處,則重疊部分△AFC的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com