【題目】已知三角形兩邊的長(zhǎng)分別是5和9,則此三角形第三邊的長(zhǎng)可能是(
A.1
B.4
C.8
D.14

【答案】C
【解析】解:此三角形第三邊的長(zhǎng)為x,則
9﹣5<x<9+5,即4<x<14,
只有選項(xiàng)C符合題意.
故選:C.
【考點(diǎn)精析】本題主要考查了三角形三邊關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角ABC中,ABC=90°,點(diǎn)DAC上,將ABD繞頂點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)90°后得到CBE.

1)求DCE的度數(shù);

2)當(dāng)AB=8,ADDC=13時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】0.49的算術(shù)平方根的相反數(shù)是( )

A. 0.7 B. -0.7 C. ±0.7 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn),在試驗(yàn)場(chǎng)地有A、B、C三點(diǎn)順次在同一筆直的賽道上,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時(shí)同向出發(fā),歷時(shí)7分鐘同時(shí)到達(dá)C點(diǎn),乙機(jī)器人始終以60米/分的速度行走,如圖是甲、乙兩機(jī)器人之間的距離y(米)與他們的行走時(shí)間x(分鐘)之間的函數(shù)圖象,請(qǐng)結(jié)合圖象,回答下列問題:

(1)A、B兩點(diǎn)之間的距離是 米,甲機(jī)器人前2分鐘的速度為 米/分;

(2)若前3分鐘甲機(jī)器人的速度不變,求線段EF所在直線的函數(shù)解析式;

(3)若線段FG∥x軸,則此段時(shí)間,甲機(jī)器人的速度為 米/分;

(4)求A、C兩點(diǎn)之間的距離;

(5)直接寫出兩機(jī)器人出發(fā)多長(zhǎng)時(shí)間相距28米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x﹣y=3,xy=1,則x2+y2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

A. 任何非負(fù)數(shù)都有兩個(gè)平方根 B. 一個(gè)正數(shù)的平方根仍然是正數(shù)

C. 只有正數(shù)才有平方根 D. 負(fù)數(shù)沒有平方根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圖形G的投影矩形定義如下:矩形的兩組對(duì)邊分別平行于x軸,y軸,圖形G的頂點(diǎn)在矩形的邊上或內(nèi)部,且矩形的面積最小.設(shè)矩形的較長(zhǎng)的邊與較短的邊的比為k,我們稱常數(shù)k為圖形G的投影比.如圖1,矩形ABCD為△DEF的投影矩形,其投影比

(1)如圖2,若點(diǎn)A(1,3),B(3,5),則△OAB投影比k的值為  

(2)已知點(diǎn)C(4,0),在函數(shù)y=2x﹣4(其中x<2)的圖象上有一點(diǎn)D,若△OCD的投影比k=2,求點(diǎn)D的坐標(biāo).

(3)已知點(diǎn)E(3,2),在直線y=x+1上有一點(diǎn)F(5,a)和一動(dòng)點(diǎn)P,若△PEF的投影比1<k<2,則點(diǎn)P的橫坐標(biāo)m的取值范圍  (直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿矩形的邊由運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,的面積為y,把y看作x的函數(shù),函數(shù)的圖像如圖2所示,則的面積為( )

A. 10 B. 16 C. 18 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x2﹣4x=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案