【題目】如圖所示,E為正方形ABCD的邊BC延長線上一點,且CE=AC,AE交CD于點F,那么∠AFC的度數為( )
A. 112.5° B. 125° C. 135° D. 150°
科目:初中數學 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數學名著,作者是我國明代數學家程大位.在《算法統(tǒng)宗》中記載:“以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?”
譯文:“用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?”
設井深為x尺,根據題意列方程,正確的是( 。
A. 3(x+4)=4(x+1) B. 3x+4=4x+1
C. 3(x﹣4)=4(x﹣1) D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=90°,AD∥BC,E為AB的中點,連接CE,BD,過點E作FE⊥CE于點E,交AD于點F,連接CF,已知2AD=AB=BC.
(1)求證:CE=BD;
(2)若AB=4,求AF的長度;
(3)求sin∠EFC的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司欲招聘一名部門經理,對甲、乙、丙三名候選人進行了三項素質測試.各項測試成績如表格所示:
測試項目 | 測試成績 | ||
甲 | 乙 | 丙 | |
專業(yè)知識 | 74 | 87 | 90 |
語言能力 | 58 | 74 | 70 |
綜合素質 | 87 | 43 | 50 |
(1)如果根據三次測試的平均成績確定人選,那么誰將被錄用?
(2)根據實際需要,公司將專業(yè)知識、語言能力和綜合素質三項測試得分按4:3:1的比例確定每個人的測試總成績,此時誰將被錄用?
(3)請重新設計專業(yè)知識、語言能力和綜合素質三項測試得分的比例來確定每個人的測試總成績,使得乙被錄用,若重新設計的比例為x:y:1,且x+y+1=10,則x= ,y= .(寫出x與y的一組整數值即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數量關系,并說明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元
(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件?
(2)如果購買乙種獎品的件數不超過甲種獎品件數的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內有一點D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,則∠BDC的度數為( )
A. 100° B. 80° C. 70° D. 50°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,CD⊥AB于點D,CD=BD.BE平分∠ABC,點H是BC邊的中點.連接DH,交BE于點G.連接CG.
(1)求證:△ADC≌△FDB;
(2)求證:
(3)判斷△ECG的形狀,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com