【題目】如圖,二次函數(shù)(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對稱軸為x=1,點(diǎn)B坐標(biāo)為(﹣1,0).則下面的四個(gè)結(jié)論:①2a+b=0;②4a-2b+c<0;③ac>0;④當(dāng)y<0時(shí),x<-1或x>2.其中正確的個(gè)數(shù)是
A.1B.2C.3D.4
【答案】B
【解析】
∵對稱軸為x=1,∴.故結(jié)論①“2a+b=0”正確.
∵點(diǎn)B坐標(biāo)為(-1,0),∴當(dāng)x=-2時(shí),4a-2b+c<0,故結(jié)論②“4a-2b+c<0”正確.
∵圖象開口向下,∴a<0.
∵圖象與y軸交于正半軸上,∴c>0.
∴ac<0,故結(jié)論③“ac>0”錯(cuò)誤.
∵對稱軸為x=1,點(diǎn)B坐標(biāo)為(-1,0),∴A點(diǎn)坐標(biāo)為:(3,0).
∴當(dāng)y<0時(shí),x<-1或x>3.故結(jié)論④“當(dāng)y<0時(shí),x<-1或x>2”錯(cuò)誤.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn):
(1)如圖1,在Rt△ABC中,∠A=90°,AB=kAC(k>1),D是AB上一點(diǎn),DE∥BC,則BD,EC的數(shù)量關(guān)系為 .
類比探究
(2)如圖2,將△AED繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為a(0°<a<90°),連接CE,BD,請問(1)中BD,EC的數(shù)量關(guān)系還成立嗎?說明理由
拓展延伸:
(3)如圖3,在(2)的條件下,將△AED繞點(diǎn)A繼續(xù)旋轉(zhuǎn),旋轉(zhuǎn)角為a(a>90°).直線BD,CE交于F點(diǎn),若AC=1,AB=,則當(dāng)∠ACE=15°時(shí),BFCF的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+m交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)結(jié)論:
①點(diǎn)C的坐標(biāo)為(0,m);
②當(dāng)m=0時(shí),△ABD是等腰直角三角形;
③若a=﹣1,則b=4;
④拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2.
其中結(jié)論正確的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文具店有三種品牌的6個(gè)筆記本,價(jià)格是4,5,7(單位:元)三種,從中隨機(jī)拿出一個(gè)本,已知(一次拿到7元本).
(1)求這6個(gè)本價(jià)格的眾數(shù).
(2)若琪琪已拿走一個(gè)7元本,嘉嘉準(zhǔn)備從剩余5個(gè)本中隨機(jī)拿一個(gè)本.
①所剩的5個(gè)本價(jià)格的中位數(shù)與原來6個(gè)本價(jià)格的中位數(shù)是否相同?并簡要說明理由;
②嘉嘉先隨機(jī)拿出一個(gè)本后不放回,之后又隨機(jī)從剩余的本中拿一個(gè)本,用列表法求嘉嘉兩次都拿到7元本的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)共同開鑿一條隧道,甲隊(duì)按一定的工作效率先施工,一段時(shí)間后,乙隊(duì)從隧道的另一端按一定的工作效率加入施工,中途乙隊(duì)調(diào)離一部分工人去完成其他任務(wù),工作效率降低.當(dāng)隧道氣打通時(shí),甲隊(duì)工作了40天,設(shè)甲,乙兩隊(duì)各自開鑿隧道的長度為y(米),甲隊(duì)的工作時(shí)間為x(天),y與x之間的函數(shù)圖象如圖所示.
(1)求甲隊(duì)的工作效率.
(2)求乙隊(duì)調(diào)離一部分工人后y與x之間的函數(shù)關(guān)系式
(3)求這條隧道的總長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線經(jīng)過點(diǎn)A(0,3),B(3,0),C(4,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求拋物線的頂點(diǎn)坐標(biāo)和對稱軸;
(3)把拋物線向上平移,使得頂點(diǎn)落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是⊙O直徑BD延長線上的一點(diǎn),AC是⊙O的切線,C為切點(diǎn).AD=CD,
(1)求證:AC=BC;
(2)若⊙O的半徑為1,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=90°,AB=AC=2,D是BC邊上的一個(gè)動點(diǎn),(不與B、C重合)在AC邊上取一點(diǎn)E,使∠ADE=45°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y.
①求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
②求y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材呈現(xiàn):如圖是華師版八年級上冊數(shù)學(xué)教材第96頁的部分內(nèi)容.
(1)定理證明:請根據(jù)教材中的分析,結(jié)合圖①,寫出“角平分線的性質(zhì)定理”完整的證明過程.
(2)定理應(yīng)用:如圖②,在△ABC中,AD、BE分別是∠BAC、∠ABC的角平分線,AD、BE的交點(diǎn)為O,連結(jié)CO交AB于點(diǎn)F,求證:∠ACF=∠BCF.
(3)如圖③,在(2)的條件下,若BE=CE,∠C=30°,△ABD沿AD翻折使點(diǎn)B落在邊AC上的點(diǎn)M處,連結(jié)DM,其中AB=,則S△DCM= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com