科目: 來源: 題型:
甲學校到丙學校要經(jīng)過乙學校. 從甲學校到乙學校有A1、A2、A3三條線路,從乙學校到丙學校有B1、B2二條線路.
1.利用樹狀圖或列表的方法表示從甲學校到丙學校的線路中所有可能出現(xiàn)的結(jié)果;
2.小張任意走了一條從甲學校到丙學校的線路,求小張恰好經(jīng)過了B1線路的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
數(shù)學課上,同學們探究發(fā)現(xiàn):如圖1,頂角為36°的等腰三角形具有一種特性,即經(jīng)過它某一頂點的一條直線可把它分成兩個小等腰三角形. 并且對其進行了證明.
1.證明后,小喬又發(fā)現(xiàn):下面兩個等腰三角形如圖2、圖3也具有這種特性.請你在
圖2、圖3中分別畫出一條直線,把它們分成兩個小等腰三角形,并在圖中標出所畫等腰三角形兩個底角的度數(shù);
2.接著,小喬又發(fā)現(xiàn):直角三角形和一些非等腰三角形也具有這樣的特性,如:直角三角形斜邊上的中線可以把它分成兩個小等腰三角形.請你畫出一個具有這種特性的三角形的示意圖,并在圖中標出此三角形的各內(nèi)角的度數(shù).(說明:要求畫出的既不是等腰三角形,也不是直角三角形.)
查看答案和解析>>
科目: 來源: 題型:
已知拋物線y=ax2+x+2.
1.當a=-1時,求此拋物線的頂點坐標和對稱軸
2.若代數(shù)式-x2+x+2的值為正整數(shù),求x的值;
3.若a是負數(shù)時,當a=a1時,拋物線y=ax2+x+2與x軸的正半軸相交于點M(m,0);當a=a2時,拋物線y=ax2+x+2與x軸的正半軸相交于點N(n,0). 若點M在點N的左邊,試比較a1與a2的大小.
查看答案和解析>>
科目: 來源: 題型:
有兩張完全重合的矩形紙片,小亮將其中一張繞點A順時針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連結(jié)BD、MF,此時他測得BD=8cm,∠ADB=30°.
1.在圖1中,請你判斷直線FM和BD是否垂直?并證明你的結(jié)論;
2.小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉(zhuǎn)得△AB1D1,AD1交FM于點K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉(zhuǎn)角β的度數(shù);
3.若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少.
查看答案和解析>>
科目: 來源: 題型:
如圖,在直角坐標系中,梯形ABCD的底邊AB在x軸上,底邊CD的端點D在y軸上.直線CB的表達式為,點A、D的坐標分別為(-4,0),(0,4). 動點P從A點出發(fā),在AB邊上勻速運動. 動點Q從點B出發(fā),在折線BCD上勻速運動,速度均為每秒1個單位長度. 當其中一個動點到達終點時,另一動點也停止運動. 設(shè)點P運動t(秒)時,△OPQ的面積為S(不能構(gòu)成△OPQ的動點除外).
1.求出點C的坐標
2.求S隨t變化的函數(shù)關(guān)系式;
3.當t為何值時,S有最大值?并求出這個最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com