相關習題
 0  145691  145699  145705  145709  145715  145717  145721  145727  145729  145735  145741  145745  145747  145751  145757  145759  145765  145769  145771  145775  145777  145781  145783  145785  145786  145787  145789  145790  145791  145793  145795  145799  145801  145805  145807  145811  145817  145819  145825  145829  145831  145835  145841  145847  145849  145855  145859  145861  145867  145871  145877  145885  366461 

科目: 來源:第2章《二次函數》中考題集(47):2.4 二次函數的應用(解析版) 題型:解答題

如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,其中A點坐標為(-1,0).點C(0,5),D(1,8)在拋物線上,M為拋物線的頂點.
(1)拋物線的解析式為______;
(2)△MCB的面積為______.

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(47):2.4 二次函數的應用(解析版) 題型:解答題

如圖①,四邊形ABCD是邊長為5的正方形,以BC的中點O為原點,BC所在直線為x軸建立平面直角坐標系.拋物線y=ax2經過A、O、D三點,圖②和圖③是把一些這樣的小正方形及其內部拋物線部分經過拼組得到的.

(1)a的值為______;
(2)圖②中矩形EFGH的面積為______;
(3)圖③中正方形PQRS的面積為______.

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(47):2.4 二次函數的應用(解析版) 題型:解答題

如圖,過原點的直線l1:y=3x,l2:y=x.點P從原點O出發(fā)沿x軸正方向以每秒1個單位長度的速度運動.直線PQ交y軸正半軸于點Q,且分別交l1、l2于點A、B.設點P的運動時間為t秒時,直線PQ的解析式為y=-x+t.△AOB的面積為Sl(如圖①).以AB為對角線作正方形ACBD,其面積為S2(如圖②).連接PD并延長,交l1于點E,交l2于點F.設△PEA的面積為S3;(如圖③)

(1)Sl關于t的函數解析式為______;(2)直線OC的函數解析式為______;
(3)S2關于t的函數解析式為______;(4)S3關于t的函數解析式為______.

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(47):2.4 二次函數的應用(解析版) 題型:解答題

如圖1,四邊形ABCD是邊長為5的正方形,以BC的中點O為原點,BC所在直線為x軸建立平面直角坐標系.拋物線y=ax2經過A,O,D三點,圖2和圖3是把一些這樣的小正方形及其內部的拋物線部分經過平移和對稱變換得到的.
(1)求a的值;
(2)求圖2中矩形EFGH的面積;
(3)求圖3中正方形PQRS的面積.

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(47):2.4 二次函數的應用(解析版) 題型:解答題

如圖,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=4,BC=,CD=9.
(1)在BC邊上找一點O,過O點作OP⊥BC交AD于P,且OP2=AB•DC.求BO的長;
(2)以BC所在直線為x軸,OP所在直線為y軸,建立平面直角坐標系,求經過A、O、D三點的拋物線的解析式,并畫出引拋物線的草圖;
(3)在(2)中的拋物線上,連接AO、DO,證明:△AOD為直角三角形;過P點任作一直線與拋物線相交于A′(x1,y1),D′(x2,y2)兩點,連接A′O、B′O,試問:△A′O′D′還為直角三角形嗎?請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(47):2.4 二次函數的應用(解析版) 題型:解答題

如圖,在直角坐標系中,O是原點,A、B、C三點的坐標分別為A(18,0),B(18,6),C(8,6),四邊形OABC是梯形,點P、Q同時從原點出發(fā),分別做勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位,點Q沿OC、CB向終點B運動,當這兩點有一點到達自己的終點時,另一點也停止運動.
(1)求出直線OC的解析式及經過O、A、C三點的拋物線的解析式.
(2)試在(1)中的拋物線上找一點D,使得以O、A、D為頂點的三角形與△AOC全等,請直接寫出點D的坐標.
(3)設從出發(fā)起,運動了t秒.如果點Q的速度為每秒2個單位,試寫出點Q的坐標,并寫出此時t的取值范圍.
(4)設從出發(fā)起,運動了t秒.當P、Q兩點運動的路程之和恰好等于梯形OABC的周長的一半,這時,直線PQ能否把梯形的面積也分成相等的兩部分?如有可能,請求出t的值;如不可能,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(47):2.4 二次函數的應用(解析版) 題型:解答題

課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數學興趣小組經討論得出結論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關于x的函數關系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設計的水槽的橫截面面積更大.畫出你設計的草圖,標上必要的數據(不要求寫出解答過程).

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(47):2.4 二次函數的應用(解析版) 題型:解答題

如圖,已知直角坐標系內的梯形AOBC(O為原點),AC∥OB,OC⊥BC,OA=2,AC,OB的長是關于x的方程x2-(k+2)x+5=0的兩個根,且S△AOC:S△BOC=1:5.
(1)填空:0C=______

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(47):2.4 二次函數的應用(解析版) 題型:解答題

已知一個二次函數的圖象經過如圖所示的三個點.
(1)求拋物線的對稱軸;
(2)平行于x軸的直線l的解析式為y=,拋物線與x軸交于A、B兩點,在拋物線的對稱軸上找點P,使BP的長等于直線l與x軸間的距離.求點P的坐標.

查看答案和解析>>

科目: 來源:第2章《二次函數》中考題集(47):2.4 二次函數的應用(解析版) 題型:解答題

如圖,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的長和寬分別為8cm和2cm,C點和M點重合,BC和MN在一條直線上.令Rt△PMN不動,矩形ABCD沿MN所在直線向右以每秒1cm的速度移動(如圖2),直到C點與N點重合為止.設移動x秒后,矩形ABCD與△PMN重疊部分的面積為ycm2.求y與x之間的函數關系式.

查看答案和解析>>

同步練習冊答案