相關(guān)習(xí)題
 0  145705  145713  145719  145723  145729  145731  145735  145741  145743  145749  145755  145759  145761  145765  145771  145773  145779  145783  145785  145789  145791  145795  145797  145799  145800  145801  145803  145804  145805  145807  145809  145813  145815  145819  145821  145825  145831  145833  145839  145843  145845  145849  145855  145861  145863  145869  145873  145875  145881  145885  145891  145899  366461 

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(42):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在等腰梯形ABCD中,已知AB=6,BC=,∠A=45°,以AB所在直線為x軸,A為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,將等腰梯形ABCD饒A點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到等腰梯形OEFG(O﹑E﹑F﹑G分別是A﹑B﹑C﹑D旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn))(圖1)
(1)寫(xiě)出C﹑F兩點(diǎn)的坐標(biāo);
(2)等腰梯形ABCD沿x軸的負(fù)半軸平行移動(dòng),設(shè)移動(dòng)后的OA=x(圖2),等腰梯形ABCD與等腰梯形OEFG重疊部分的面積為y,當(dāng)點(diǎn)D移動(dòng)到等腰梯形OEFG的內(nèi)部時(shí),求y與x之間的關(guān)系式;
(3)線段DC上是否存在點(diǎn)P,使EFP為等腰三角形?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(42):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點(diǎn),
(1)若拋物線l2與l1關(guān)于x軸對(duì)稱(chēng),求l2的解析式;
(2)若點(diǎn)B是拋物線l1上的一動(dòng)點(diǎn)(B不與A、C重合),以AC為對(duì)角線,A、B、C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)定為D,求證:點(diǎn)D在l2上;
(3)探索:當(dāng)點(diǎn)B分別位于l1在x軸上、下兩部分的圖象上時(shí),平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(42):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖①,有兩個(gè)形狀完全相同的直角三角形ABC和EFG疊放在一起(點(diǎn)A與點(diǎn)E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點(diǎn).
如圖②,若整個(gè)△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時(shí),點(diǎn)P從△EFG的頂點(diǎn)G出發(fā),以1cm/s的速度在直角邊GF上向點(diǎn)F運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)F時(shí),點(diǎn)P停止運(yùn)動(dòng),△EFG也隨之停止平移.設(shè)運(yùn)動(dòng)時(shí)間為x(s),F(xiàn)G的延長(zhǎng)線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點(diǎn)P與G、F重合的情況).

(1)當(dāng)x為何值時(shí),OP∥AC;
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時(shí)刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說(shuō)明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(42):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O為原點(diǎn),E為AB上一點(diǎn),把△CBE沿CE折疊,使點(diǎn)B恰好落在OA邊上的點(diǎn)D處,點(diǎn)A,D的坐標(biāo)分別為(5,0)和(3,0).
(1)求點(diǎn)C的坐標(biāo);
(2)求DE所在直線的解析式;
(3)設(shè)過(guò)點(diǎn)C的拋物線y=2x2+bx+c(b<0)與直線BC的另一個(gè)交點(diǎn)為M,問(wèn)在該拋物線上是否存在點(diǎn)G,使得△CMG為等邊三角形?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(42):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線y=ax2+bx+c與y軸的交點(diǎn)為C,頂點(diǎn)為M,直線CM的解析式y(tǒng)=-x+2并且線段CM的長(zhǎng)為
(1)求拋物線的解析式;
(2)設(shè)拋物線與x軸有兩個(gè)交點(diǎn)A(x1,0)、B(x2,0),且點(diǎn)A在B的左側(cè),求線段AB的長(zhǎng);
(3)若以AB為直徑作⊙N,請(qǐng)你判斷直線CM與⊙N的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(42):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)B(1,0),C(-3,0),且過(guò)點(diǎn)A(3,6).
(1)求a、b、c的值;
(2)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱(chēng)軸與線段AC相交于點(diǎn)Q,連接CP、PB、BQ,試求四邊形PBQC的面積.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(43):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在矩形ABCD中,AB=2AD,線段EF=10.在EF上取一點(diǎn)M,分別以EM、MF為一邊作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD.令MN=x,當(dāng)x為何值時(shí),矩形EMNH的面積S有最大值,最大值是多少?

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(43):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,經(jīng)過(guò)點(diǎn)M(-1,2),N(1,-2)的拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn).
(1)求b的值.
(2)若OC2=OA•OB,試求拋物線的解析式.
(3)在該拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△PAC的周長(zhǎng)最小?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(43):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知,二次函數(shù)y=mx2+3(m-)x+4(m<0)與x軸交于A、B兩點(diǎn),(A在B的左邊),與y軸交于點(diǎn)C,且∠ACB=90度.
(1)求這個(gè)二次函數(shù)的解析式;
(2)矩形DEFG的一條邊DG在AB上,E、F分別在BC、AC上,設(shè)OD=x,矩形DEFG的面積為S,求S關(guān)于x的函數(shù)解析式;
(3)將(1)中所得拋物線向左平移2個(gè)單位后,與x軸交于A′、B′兩點(diǎn)(A′在B′的左邊),矩形D′E′F′G′的一條邊D′G′在A′B′上(G′在D′的左邊),E′、F′分別在拋物線上,矩形D′E′F′G′的周長(zhǎng)是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》中考題集(43):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知開(kāi)口向上的拋物線y=ax2+bx+c與x軸交于A(-3,0)、B(1,0)兩點(diǎn),與y軸交于C點(diǎn),∠ACB不小于90°.
(1)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);
(2)求系數(shù)a的取值范圍;
(3)設(shè)拋物線的頂點(diǎn)為D,求△BCD中CD邊上的高h(yuǎn)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案