相關習題
 0  145721  145729  145735  145739  145745  145747  145751  145757  145759  145765  145771  145775  145777  145781  145787  145789  145795  145799  145801  145805  145807  145811  145813  145815  145816  145817  145819  145820  145821  145823  145825  145829  145831  145835  145837  145841  145847  145849  145855  145859  145861  145865  145871  145877  145879  145885  145889  145891  145897  145901  145907  145915  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.4 二次函數(shù)的應用(解析版) 題型:解答題

在平面直角坐標系xOy中,拋物線y=x2+bx+c與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,點B的坐標為(3,0),將直線y=kx沿y軸向上平移3個單位長度后恰好經(jīng)過B,C兩點.
(1)求直線BC及拋物線的解析式;
(2)設拋物線的頂點為D,點P在拋物線的對稱軸上,且∠APD=∠ACB,求點P的坐標;
(3)連接CD,求∠OCA與∠OCD兩角和的度數(shù).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.4 二次函數(shù)的應用(解析版) 題型:解答題

已知直線y=kx+1經(jīng)過點M(d,-2)和點N(1,2),交y軸于點H,交x軸于點F.
(1)求d的值;
(2)將直線MN繞點M順時針旋轉(zhuǎn)45°得到直線ME,點Q(3,e)在直線ME上,①證明ME∥x軸;②試求過M、N、Q三點的拋物線的解析式;
(3)在(2)的條件下,連接NQ,作△NMQ的高NB,點A為MN上的一個動點,若BA將△NMQ的面積分為1:2兩部分,且射線BA交過M、N、Q三點的拋物線于點C,試求點C的坐標.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,在平面直角坐標系中,四邊形OABC是矩形,點B的坐標為(4,3).平行于對角線AC的直線m從原點O出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,設直線m與矩形OABC的兩邊分別交于點M、N,直線m運動的時間為t(秒).
(1)點A的坐標是______,點C的坐標是______;
(2)當t=______秒或______秒時,MN=AC;
(3)設△OMN的面積為S,求S與t的函數(shù)關系式;
(4)探求(3)中得到的函數(shù)S有沒有最大值?若有,求出最大值;若沒有,要說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,拋物線y=ax2-2x+c經(jīng)過直線y=x-3與坐標軸的兩個交點A、B,此拋物線與x軸的另一個交點為C,拋物線的頂點為D.
(1)求此拋物線的解析式;
(2)⊙M是過A、B、C三點的圓,連接MC、MB、BC,求劣弧CB的長;(結果用精確值表示)
(3)點P為拋物線上的一個動點,求使S△APC:S△ACD=5:4的點P的坐標.(結果用精確值表示)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.4 二次函數(shù)的應用(解析版) 題型:解答題

△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,拋物線y=x2-2ax+b2交x軸于兩點M,N,交y軸于點P,其中M的坐標是(a+c,0).
(1)求證:△ABC是直角三角形;
(2)若S△MNP=3S△NOP,①求cosC的值;②判斷△ABC的三邊長能否取一組適當?shù)闹,使三角形MND(D為拋物線的頂點)是等腰直角三角形?如能,請求出這組值;如不能,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(點A在x軸的正半軸上),與y軸交于點C,矩形DEFG的一條邊DE在線段AB上,頂點F、G分別在線段BC、AC上,拋物線P上部分點的橫坐標對應的縱坐標如下:
x-3-212
y-4
(1)求A、B、C三點的坐標;
(2)若點D的坐標為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關系,并指出m的取值范圍;
(3)當矩形DEFG的面積S取最大值時,連接DF并延長至點M,使FM=k•DF,若點M不在拋物線P上,求k的取值范圍.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.4 二次函數(shù)的應用(解析版) 題型:解答題

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.
(1)求點C的坐標;
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M.問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為,對稱軸公式為x=-

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,正方形ABCD的邊長為3a,兩動點E、F分別從頂點B、C同時開始以相同速度沿BC、CD運動,與△BCF相應的△EGH在運動過程中始終保持△EGH≌△BCF,對應邊EG=BC,B、E、C、G在一直線上.
(1)若BE=a,求DH的長;
(2)當E點在BC邊上的什么位置時,△DHE的面積取得最小值?并求該三角形面積的最小值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.4 二次函數(shù)的應用(解析版) 題型:解答題

已知拋物線y=ax2+bx+c的對稱軸是經(jīng)過點(2,0)且與y軸平行的直線,拋物線與x軸相交于點A(1,0),與y軸相交于點B(0,3),其在對稱軸左側的圖象如圖所示.
(1)求拋物線所對應的函數(shù)關系式,并寫出拋物線的頂點坐標;
(2)畫出拋物線在對稱軸右側的圖象,并根據(jù)圖象,寫出當x為何值時,y<0.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,拋物線y=x2-2x-3與x軸交A、B兩點(A點在B點左側),直線l與拋物線交于A、C兩點,其中C點的橫坐標為2.
(1)求A、B兩點的坐標及直線AC的函數(shù)表達式;
(2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值;
(3)點G拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案