相關(guān)習(xí)題
 0  146510  146518  146524  146528  146534  146536  146540  146546  146548  146554  146560  146564  146566  146570  146576  146578  146584  146588  146590  146594  146596  146600  146602  146604  146605  146606  146608  146609  146610  146612  146614  146618  146620  146624  146626  146630  146636  146638  146644  146648  146650  146654  146660  146666  146668  146674  146678  146680  146686  146690  146696  146704  366461 

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》常考題集(16):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

荊州市“建設(shè)社會(huì)主義新農(nóng)村”工作組到某縣大棚蔬菜生產(chǎn)基地指導(dǎo)菜農(nóng)修建大棚種植蔬菜.通過(guò)調(diào)查得知:平均修建每公頃大棚要用支架、農(nóng)膜等材料費(fèi)2.7萬(wàn)元;購(gòu)置滴灌設(shè)備,這項(xiàng)費(fèi)用(萬(wàn)元)與大棚面積(公頃)的平方成正比,比例系數(shù)為0.9;另外每公頃種植蔬菜需種子、化肥、農(nóng)藥等開(kāi)支0.3萬(wàn)元.每公頃蔬菜年均可賣(mài)7.5萬(wàn)元.
(1)基地的菜農(nóng)共修建大棚x(公頃),當(dāng)年收益(扣除修建和種植成本后)為y(萬(wàn)元),寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式.
(2)若某菜農(nóng)期望通過(guò)種植大棚蔬菜當(dāng)年獲得5萬(wàn)元收益,工作組應(yīng)建議他修建多少公頃大棚.(用分?jǐn)?shù)表示即可)
(3)除種子、化肥、農(nóng)藥投資只能當(dāng)年受益外,其它設(shè)施3年內(nèi)不需增加投資仍可繼續(xù)使用.如果按3年計(jì)算,是否修建大棚面積越大收益越大?修建面積為多少時(shí)可以得到最大收益?請(qǐng)幫工作組為基地修建大棚提一項(xiàng)合理化建議.

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(16):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
(3)若該商場(chǎng)獲得利潤(rùn)不低于500元,試確定銷(xiāo)售單價(jià)x的范圍.

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(16):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)是y元,請(qǐng)寫(xiě)出y與x之間的函數(shù)表達(dá)式;(不要求寫(xiě)自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(16):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣(mài)出210件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣(mài)10件(每件售價(jià)不能高于65元).設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷(xiāo)售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫(xiě)出自變量x的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤(rùn)恰為2200元?根據(jù)以上結(jié)論,請(qǐng)你直接寫(xiě)出售價(jià)在什么范圍時(shí),每個(gè)月的利潤(rùn)不低于2200元?

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(16):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

種植能手小李的實(shí)驗(yàn)田可種植A種作物或B種作物(A、B兩種作物不能同時(shí)種植),原來(lái)的種植情況如表.通過(guò)參加農(nóng)業(yè)科技培訓(xùn),小李提高了種植技術(shù).現(xiàn)準(zhǔn)備在原有的基礎(chǔ)上增種,以提高總產(chǎn)量.但根據(jù)科學(xué)種植的經(jīng)驗(yàn),每增種1棵A種或B種作物,都會(huì)導(dǎo)致單棵作物平均產(chǎn)量減少0.2千克,而且每種作物的增種數(shù)量都不能超過(guò)原有數(shù)量的80%.設(shè)A種作物增種m棵,總產(chǎn)量為yA千克;B種作物增種n棵,總產(chǎn)量為yB千克.
種植品種
數(shù)量
A種作物B中作物
原種植量(棵)5060
原產(chǎn)量(千克/棵)3026
(1)A種作物增種m棵后,單棵平均產(chǎn)量為_(kāi)_____千克;B種作物增種n棵后,單棵平均產(chǎn)量為_(kāi)_____千克;
(2)求yA與m之間的函數(shù)關(guān)系式及yB與n之間的函數(shù)關(guān)系式;
(3)求提高種植技術(shù)后,小李增種何種作物可獲得最大總產(chǎn)量?最大總產(chǎn)量是多少千克?

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》常考題集(16):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

為把產(chǎn)品打入國(guó)際市場(chǎng),某企業(yè)決定從下面兩個(gè)投資方案中選擇一個(gè)進(jìn)行投資生產(chǎn).方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a萬(wàn)美元(a為常數(shù),且3<a<8),每件產(chǎn)品銷(xiāo)售價(jià)為10萬(wàn)美元,每年最多可生產(chǎn)200件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本為8萬(wàn)美元,每件產(chǎn)品銷(xiāo)售價(jià)為18萬(wàn)美元,每年最多可生產(chǎn)120件.另外,年銷(xiāo)售x件乙產(chǎn)品時(shí)需上交0.05x2萬(wàn)美元的特別關(guān)稅.在不考慮其它因素的情況下:
(1)分別寫(xiě)出該企業(yè)兩個(gè)投資方案的年利潤(rùn)y1、y2與相應(yīng)生產(chǎn)件數(shù)x(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(2)分別求出這兩個(gè)投資方案的最大年利潤(rùn);
(3)如果你是企業(yè)決策者,為了獲得最大收益,你會(huì)選擇哪個(gè)投資方案?

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(16):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,等腰梯形花圃ABCD的底邊AD靠墻,另三邊用長(zhǎng)為40米的鐵欄桿圍成,設(shè)該花圃的腰AB的長(zhǎng)為x米.
(1)請(qǐng)求出底邊BC的長(zhǎng)(用含x的代數(shù)式表示);
(2)若∠BAD=60°,該花圃的面積為S米2
①求S與x之間的函數(shù)關(guān)系式(要指出自變量x的取值范圍),并求當(dāng)S=93時(shí)x的值;
②如果墻長(zhǎng)為24米,試問(wèn)S有最大值還是最小值?這個(gè)值是多少?

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》常考題集(16):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

由于國(guó)家重點(diǎn)扶持節(jié)能環(huán)保產(chǎn)業(yè),某種節(jié)能產(chǎn)品的銷(xiāo)售市場(chǎng)逐漸回暖,某經(jīng)銷(xiāo)商銷(xiāo)售這種產(chǎn)品,年初與生產(chǎn)廠(chǎng)家簽訂了一份進(jìn)貨合同,約定一年內(nèi)進(jìn)價(jià)為0.1萬(wàn)元/臺(tái),并預(yù)付了5萬(wàn)元押金.他計(jì)劃一年內(nèi)要達(dá)到一定的銷(xiāo)售量,且完成此銷(xiāo)售量所用的進(jìn)貨總金額加上押金控制在不低于34萬(wàn)元,但不高于40萬(wàn)元.若一年內(nèi)該產(chǎn)品的售價(jià)y(萬(wàn)元/臺(tái))與月次x(1≤x≤12且為整數(shù))滿(mǎn)足關(guān)系式:y=,一年后發(fā)現(xiàn)實(shí)際每月的銷(xiāo)售量p(臺(tái))與月次x之間存在如圖所示的變化趨勢(shì).
(1)直接寫(xiě)出實(shí)際每月的銷(xiāo)售量p(臺(tái))與月次x之間的函數(shù)關(guān)系式;
(2)求前三個(gè)月中每月的實(shí)際銷(xiāo)售利潤(rùn)w(萬(wàn)元)與月次x之間的函數(shù)關(guān)系式;
(3)試判斷全年哪一個(gè)月的售價(jià)最高,并指出最高售價(jià);
(4)請(qǐng)通過(guò)計(jì)算說(shuō)明他這一年是否完成了年初計(jì)劃的銷(xiāo)售量.

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》常考題集(16):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場(chǎng)在銷(xiāo)售旺季臨近時(shí),某品牌的童裝銷(xiāo)售價(jià)格呈上升趨勢(shì),假如這種童裝開(kāi)始時(shí)的售價(jià)為每件20元,并且每周(7天)漲價(jià)2元,從第6周開(kāi)始,保持每件30元的穩(wěn)定價(jià)格銷(xiāo)售,直到11周結(jié)束,該童裝不再銷(xiāo)售.
(1)請(qǐng)建立銷(xiāo)售價(jià)格y(元)與周次x之間的函數(shù)關(guān)系;
(2)若該品牌童裝于進(jìn)貨當(dāng)周售完,且這種童裝每件進(jìn)價(jià)z(元)與周次x之間的關(guān)系為z=-(x-8)2+12,1≤x≤11,且x為整數(shù),那么該品牌童裝在第幾周售出后,每件獲得利潤(rùn)最大?并求最大利潤(rùn)為多少?

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(16):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某體育用品商店購(gòu)進(jìn)一批滑板,每件進(jìn)價(jià)為100元,售價(jià)為130元,每星期可賣(mài)出80件.商家決定降價(jià)促銷(xiāo),根據(jù)市場(chǎng)調(diào)查,每降價(jià)5元,每星期可多賣(mài)出20件.
(1)求商家降價(jià)前每星期的銷(xiāo)售利潤(rùn)為多少元?
(2)降價(jià)后,商家要使每星期的銷(xiāo)售利潤(rùn)最大,應(yīng)將售價(jià)定為多少元?最大銷(xiāo)售利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案