相關習題
 0  170283  170291  170297  170301  170307  170309  170313  170319  170321  170327  170333  170337  170339  170343  170349  170351  170357  170361  170363  170367  170369  170373  170375  170377  170378  170379  170381  170382  170383  170385  170387  170391  170393  170397  170399  170403  170409  170411  170417  170421  170423  170427  170433  170439  170441  170447  170451  170453  170459  170463  170469  170477  366461 

科目: 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•杭州)二次函數(shù)y=ax2+bx+c的圖象的一部分如圖,已知它的頂點M在第二象限,且經過點A(1,0)和點B(0,1).
(1)請判斷實數(shù)a的取值范圍,并說明理由;
(2)設此二次函數(shù)的圖象與x軸的另一個交點為C,當△AMC的面積為△ABC面積的倍時,求a的值.

查看答案和解析>>

科目: 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•海淀區(qū))已知:在平面直角坐標系中,點O為坐標原點,點A的坐標為(0,2),以OA為直徑作圓B.若點D是x軸上的一動點,連接AD交圓B于點C.
(1)當tan∠DAO=時,求直線BC的解析式;
(2)過點D作DP∥y軸與過B、C兩點的直線交于點P,請任意求出三個符合條件的點P的坐標,并確定圖象經過這三個點的二次函數(shù)的解析式;
(3)若點P滿足(2)中的條件,點M的坐標為(-3,3),求線段PM與PB的和的最小值,并求出此時點P的坐標.

查看答案和解析>>

科目: 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•哈爾濱)已知:拋物線y=-x2-(m+3)x+m2-12與x軸交于A(x1,0)、B(x2,0)兩點,且x1<0,x2>0,拋物線與y軸交于點C,OB=2OA.
(1)求拋物線的解析式;
(2)在x軸上,點A的左側,求一點E,使△ECO與△CAO相似,并說明直線EC經過(1)中拋物線的頂點D;
(3)過(2)中的點E的直線y=x+b與(1)中的拋物線相交于M、N兩點,分別過M、N作x軸的垂線,垂足為M′、N′,點P為線段MN上一點,點P的橫坐標為t,過點P作平行于y軸的直線交(1)中所求拋物線于點Q.是否存在t值,使S梯形MM'N'N:S△QMN=35:12?若存在,求出滿足條件的t值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•廣州)已知拋物線y=(m+1)x2-2mx+m(m為整數(shù))經過點A(1,1),頂點為P,且與x軸有兩個不同的交點.
(1)判斷點P是否在線段OA上(O為坐標原點),并說明理由;
(2)設該拋物線與x軸的兩個交點的橫坐標分別為x1、x2,且x1<x2,是否存在實數(shù)m,使x1<m<x2?若存在,請求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•廣東)如圖,在等腰直角三角形ABC中,O是斜邊AC的中點,P是斜邊AC上的一個動點,D為BC上的一點,且PB=PD,DE⊥AC,垂足為點E.
(1)求證:PE=BO;
(2)設AC=2a,AP=x,四邊形PBDE的面積為y,求y與x之間的函數(shù)關系式,并寫出自變量的取值范圍.

查看答案和解析>>

科目: 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•福州)如圖所示,拋物線y=-(x-m)2的頂點為A,直線與y軸的交點為B,其中m>0.
(1)寫出拋物線對稱軸及頂點A的坐標;(用含有m的代數(shù)式表示)
(2)證明點A在直線l上,并求∠OAB的度數(shù);
(3)動點Q在拋物線的對稱軸上,在對稱軸左側的拋物線上是否存在點P,使以P、Q、A為頂點的三角形與△OAB全等?若存在,求出m的值,并寫出所有符合上述條件的P點坐標;若不存在,說明理由.

查看答案和解析>>

科目: 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•東城區(qū))如圖,直線y=-x+分別與x軸、y軸交于點A、B,⊙E經過原點O及A、B兩點.
(1)C是⊙E上一點,連接BC交OA于點D,若∠COD=∠CBO,求點A、B、C的坐標;
(2)求經過O、C、A三點的拋物線的解析式;
(3)若延長BC到P,使DP=2,連接AP,試判斷直線PA與⊙E的位置關系,并說明理由.

查看答案和解析>>

科目: 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•大連)如圖,拋物線y=-x2+5x+n經過點A(1,0),與y軸交于點B.
(1)求拋物線的解析式;
(2)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求P點坐標.

查看答案和解析>>

科目: 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•大連)閱讀材料,解答問題.
材料:“小聰設計的一個電子游戲是:一電子跳蚤從這P1(-3,9)開始,按點的橫坐標依次增加1的規(guī)律,在拋物線y=x2上向右跳動,得到點P2、P3、P4、P5…(如圖1所示).過P1、P2、P3分別作P1H1、P2H2、P3H3垂直于x軸,垂足為H1、H2、H3,則S△P1P2P3=S梯形P1H1H3P3-S梯形P1H1H2P2-S梯形P2H2H3P3=(9+1)×2-(9+4)×1-(4+1)×1,即△P1P2P3的面積為1.”
問題:
(1)求四邊形P1P2P3P4和P2P3P4P5的面積(要求:寫出其中一個四邊形面積的求解過程,另一個直接寫出答案);
(2)猜想四邊形Pn-1PnPn+1Pn+2的面積,并說明理由(利用圖2);
(3)若將拋物線y=x2改為拋物線y=x2+bx+c,其它條件不變,猜想四邊形Pn-1PnPn+1Pn+2的面積(直接寫出答案).

查看答案和解析>>

科目: 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•四川)已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點A和B(4,0),與y軸交于點C(0,8),其對稱軸為x=1.
(1)求此拋物線的解析式;
(2)過A、B、C三點作⊙O′與y軸的負半軸交于點D,求經過原點O且與直線AD垂直(垂足為E)的直線OE的方程;
(3)設⊙O′與拋物線的另一個交點為P,直線OE與直線BC的交點為Q,直線x=m與拋物線的交點為R,直線x=m與直線OE的交點為S.是否存在整數(shù)m,使得以點P、Q、R、S為頂點的四邊形為平行四邊形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案