科目: 來源: 題型:
【題目】在中,,點P從點A出發(fā),以的速度沿折線運動,最終回到點A,設點P的運動時間為,線段AP的長度為,則能夠反映y與x之間函數(shù)關系的圖象大致是
A. B.
C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.
(1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?
(2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在坐標平面內,已知點A(0,3)、B(6,5),
(1)連接AB,在x軸上確定點P,使PA=PB(用尺規(guī)作圖,保留作圖痕跡,不寫作法),并求出P點坐標;
(2)點Q是x軸上的動點,求點Q與A、B兩點的距離之和的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場服裝部分為了解服裝的銷售情況,統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),并根據統(tǒng)計的這組銷售額的數(shù)據,繪制出如下的統(tǒng)計圖①和圖②.請根據相關信息,解答下列問題:
該商場服裝營業(yè)員的人數(shù)為 ,圖①中m的值為 ;
求統(tǒng)計的這組銷售額數(shù)據的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,AB=AC,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且AE+AF=AB,
(1)求證:DE⊥DF;
(2)若AC=2,求四邊形DEAF的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,點D是AC的中點,作∠ADB的角平分線DE交AB于點E,AE=6,DE=10,點P在邊BC上,且△DEP為等腰三角形,則BP的長為_____________
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,點A的坐標為(0,4),線段MN的位置如圖所示,其中點M的坐標為(﹣3,﹣1),點N的坐標為(3,﹣2).
(1)將線段MN平移得到線段AB,其中點M的對應點為A,點N的對稱點為B.
①點M平移到點A的過程可以是:先向 平移 個單位長度,再向 平移 個單位長度;
②點B的坐標為 ;
(2)在(1)的條件下,若點C的坐標為(4,0),連接AC,BC,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】李明準備進行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于58 cm2,李明應該怎么剪這根鐵絲?
(2)李明認為這兩個正方形的面積之和不可能等于48 cm2,你認為他的說法正確嗎?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】完成下面的證明:如圖,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,
求證:∠EGF=90°.
證明:∵AB∥GH(已知),
∴∠1=∠3( ),
又∵CD∥GH(已知),
∴ (兩直線平行,內錯角相等)
∵AB∥CD(已知),
∴∠BEF+ =180°(兩直線平行,同旁內角互補)
∵EG平分∠BEF(已知),
∴∠1= (角平分線定義),
又∵FG平分∠EFD(已知),
∴∠2=∠EFD( ),
∴∠1+∠2=( +∠EFD)
∴∠l+∠2=90°,
∴∠3+∠4=90°(等量代換),
即∠EGF=90°.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com