科目: 來源: 題型:
【題目】如圖在等邊△ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點(diǎn)E,使CE=2,連接DE,動點(diǎn)P從點(diǎn)B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為t秒,當(dāng)t的值為_____秒時,△ABP和△DCE全等.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠ABC=∠ACB,BD、CD、BE分別平分△ABC的內(nèi)角∠ABC、外角∠ACP、外角∠MBC.以下結(jié)論:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠A+2∠BEC=180°;⑤DB平分∠ADC.其中正確的結(jié)論有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,△ABC中,點(diǎn)D、E、F分別在三邊上,E是AC的中點(diǎn),AD、BE、CF交于一點(diǎn)G,BD=2DC,S△GEC=3,S△GDC=4,則△ABC的面積是( 。
A.25B..30C.35D.40
查看答案和解析>>
科目: 來源: 題型:
【題目】先閱讀一段文字,再回答下列問題:
已知在平面內(nèi)兩點(diǎn)坐標(biāo)P1(x1,y1),P2(x2,y2),其兩點(diǎn)間距離公式為 ,同時,當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸上或平行于x軸或垂直于x軸距離公式可簡化成|x2-x1|或|y2-y1|.
(1)已知A(3,5),B(-2,-1),試求A,B兩點(diǎn)的距離;
(2)已知A、B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為5,點(diǎn)B的縱坐標(biāo)為-1,試求A,B兩點(diǎn)的距離.
(3)已知一個三角形各頂點(diǎn)坐標(biāo)為A(0,6),B(-3,2),C(3,2),你能斷定此三角形的形狀嗎?說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】我們有時會碰上形如,,的式子,其實(shí)我們可以將其進(jìn)一步分母有理化.
形如的式子還可以用以下方法化簡:.(*)
(1)請用不同的方法化簡(寫出化簡過程):
(i)參照分母有理化的方法得______________________________;
(ii)參照(*)式的化簡方法得______________________________.
(2)化簡:.
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)請作出△ABC關(guān)于y軸對稱的△A1B1C1;
(3)寫出點(diǎn)B1的坐標(biāo);
(4)求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,半徑為1個單位長度的半圓O1,O2,O3,…組成一條平滑曲線,點(diǎn)P從點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動,速度為每秒 個單位長度,則第2016秒時,點(diǎn)P的坐標(biāo)是( )
A.(2015,0)B.(2015,-1)C.(2016,0)D.(2016,-1)
查看答案和解析>>
科目: 來源: 題型:
【題目】為了測量被池塘隔開的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學(xué)分別測量出以下四組數(shù)據(jù):①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據(jù)所測數(shù)據(jù),求出A,B間距離的有【 】
A.1組 B.2組 C.3組 D.4組
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com