相關(guān)習(xí)題
 0  357033  357041  357047  357051  357057  357059  357063  357069  357071  357077  357083  357087  357089  357093  357099  357101  357107  357111  357113  357117  357119  357123  357125  357127  357128  357129  357131  357132  357133  357135  357137  357141  357143  357147  357149  357153  357159  357161  357167  357171  357173  357177  357183  357189  357191  357197  357201  357203  357209  357213  357219  357227  366461 

科目: 來源: 題型:

【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為21,則下列結(jié)論正確的是( )

A. ∠E=2∠K B. BC=2HI C. 六邊形ABCDEF的周長=六邊形GHIJKL的周長 D. S六邊形ABCDEF=2S六邊形GHIJKL

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A、B間的距離:先在AB外選一點C,然后測出AC,BC的中點M,N,并測量出MN的長為12m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動的描述錯誤的是( )

A. AB=24m B. MNAB

C. CMN∽△CAB D. CM:MA=1:2

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四邊形ABCD是正方形, GBC上任意一點,DE⊥AG于點E,BF⊥AG于點F.

(1) 求證:DEBF = EF

(2) 當(dāng)點GBC邊中點時, 試探究線段EFGF之間的數(shù)量關(guān)系, 并說明理由.

(3) 若點GCB延長線上一點,其余條件不變.請畫出圖形,寫出此時DEBF、EF之間的數(shù)量關(guān)系(不需要證明).

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點B為第一象限內(nèi)一點,點Ax軸正半軸上一點,分別連接OB,AB,AOB為等邊三角形,點B的橫坐標(biāo)為4

1)如圖1,求線段OA的長;

2)如圖2,點M在線段OA上(點M不與點O、點A重合),點N在線段BA的延長線上,連接MB,MN,BMMN,設(shè)OM的長為tBN的長為d,求dt的關(guān)系式(不要求寫出t的取值范圍);

3)在(2)的條件下,點D為第四象限內(nèi)一點,分別連接OD,MD,NDMND為等邊三角形,線段MA的垂直平分線交OD的延長線于點E,交MA于點H,連接AE,交ND于點F,連接MF,若MFAM+AN,求點E的橫坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,將矩形紙片ABCD中,AB6,BC9,沿EF折疊,使點B落在DC邊上點P處,點A落在Q處,ADPQ相交于點H

1)如圖1,當(dāng)點P為邊DC的中點時,求EC的長;

2)如圖2,當(dāng)∠CPE30°,求EC、AF的長;(3)如圖2,在(2)條件下,求四邊形EPHF的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.

△ACB和△DCE的頂點都在格點上,ED的延長線交AB于點F.

(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,已知O為坐標(biāo)原點,長方形ABCD(點A與坐標(biāo)原點重合)的頂點DB分別在x軸、y軸上,且點C的坐標(biāo)為(-4,8),連接BD,將ABD沿直線BD翻折至ABD,交CD于點E

1)求SBED的面積;

2)求點A坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知:邊長為2的正方形OABC在平面直角坐標(biāo)系中位于x軸上方,OAx軸的正半軸的夾角為60°,則B點的坐標(biāo)為_____.

查看答案和解析>>

科目: 來源: 題型:

【題目】一架方梯長25米,如圖,斜靠在一面墻上,梯子底端離墻7米.

1)這個梯子的頂端距地面有多高?

2)如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動了幾米?

3)當(dāng)梯子的頂端下滑的距離與梯子的底端水平滑動的距離相等時,這時梯子的頂端距地面有多高?

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀下列材料:

小明遇到一個問題:在中,,三邊的長分別為、,求的面積.

小明是這樣解決問題的:如圖①所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為),再在網(wǎng)格中畫出格點(即三個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出的面積.他把這種解決問題的方法稱為構(gòu)圖法.

參考小明解決問題的方法,完成下列問題:

)圖是一個的正方形網(wǎng)格(每個小正方形的邊長為) .

①利用構(gòu)圖法在答卷的圖中畫出三邊長分別為、、的格點

②計算①中的面積為__________.(直接寫出答案)

)如圖,已知,以為邊向外作正方形,,連接

①判斷面積之間的關(guān)系,并說明理由.

②若,,,直接寫出六邊形的面積為__________

查看答案和解析>>

同步練習(xí)冊答案