科目: 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:
以原點(diǎn)為對稱中心,畫出的中心對稱圖形.
以原點(diǎn)為位似中心,在原點(diǎn)的另一側(cè)畫出的位似三角形,與的位似比為;
的面積________.
查看答案和解析>>
科目: 來源: 題型:
【題目】計(jì)算
(1)4a2b(2b2-1)
(2)(x-2y)(y+2x)
(3)(6m2n-3m2)÷(-3m2)
(4)2019×2017-20182(用簡便方法計(jì)算)
(5)先化簡,再求值:;其中
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC為等邊三角形,D為AC的中點(diǎn),∠EDF=120°,DE交線段AB于E,DF交直線BC于F.
(1)如圖(1),求證:DE=DF;
(2)如圖(2),若BE=3AE,求證:CF=BC.
(3)如圖(3),若BE=AE,則CF= BC;在圖(1)中,若BE=4AE,則CF= BC.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,,.在邊上有個(gè)不同的點(diǎn),,,¨¨¨¨,,過這個(gè)點(diǎn)分別作的內(nèi)接矩形,,¨¨¨¨,,設(shè)每個(gè)矩形的周長分別為,,¨¨¨¨,,則¨¨¨¨________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,點(diǎn)、分別在、邊上,與相交,如果,,平分,那么下列三角形中不與相似的是( )
A. △ABD B. △ACD C. △AGH D. △CDH
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題12分)如圖甲,在平面直角坐標(biāo)系中,直線y=x+8分別交x軸、y軸于點(diǎn)A、B,⊙O的半徑為2個(gè)單位長度.點(diǎn)P為直線y=x+8上的動(dòng)點(diǎn),過點(diǎn)P作⊙O的切線PC、PD,切點(diǎn)分別為C、D,且PC⊥PD.
(1)試說明四邊形OCPD的形狀(要有證明過程);
(2)求點(diǎn)P的坐標(biāo);
(3)如圖乙,若直線y=x+b將⊙O的圓周分成兩段弧長之比為1:3,請直接寫出b的值
(4)向右移動(dòng)⊙O(圓心O始終保持在x軸上),試求出當(dāng)⊙O與直線y=x+8有交點(diǎn)時(shí)圓心O的橫坐標(biāo)m的取值范圍。
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)(學(xué)習(xí)心得)
小剛同學(xué)在學(xué)習(xí)完“圓”這一章內(nèi)容后,感覺到一些幾何問題,如果添加輔助圓,運(yùn)用圓的知識解決,可以使問題變得非常容易.
例如:如圖1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一點(diǎn),且AD=AC,求∠BDC的度數(shù),若以點(diǎn)A為圓心,AB為半徑作輔助圓⊙A,則點(diǎn)C、D必在⊙A上,∠BAC是⊙A的圓心角,而∠BDC是圓周角,從而可容易得到∠BDC= °.
(2)(問題解決)
如圖2,在四邊形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度數(shù).
小剛同學(xué)認(rèn)為用添加輔助圓的方法,可以使問題快速解決,他是這樣思考的:△ABD的外接圓就是以BD的中點(diǎn)為圓心,BD長為半徑的圓;△ACD的外接圓也是以BD的中點(diǎn)為圓心,BD長為半徑的圓.這樣A、B、C、D四點(diǎn)在同一個(gè)圓上,進(jìn)而可以利用圓周角的性質(zhì)求出∠BAC的度數(shù),請運(yùn)用小剛的思路解決這個(gè)問題.
(3)(問題拓展)
如圖3,在△ABC中,∠BAC=45°,AD是BC邊上的高,且BD=4,CD=2,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com