科目: 來源: 題型:
【題目】如圖1,直線分別與軸交于兩點,過點的直線交軸負半軸于,且.
(1)求直線的函數(shù)表達式:
(2)如圖2, 為軸上點右側(cè)的一動點,以為直角頂點,為一腰在第一象限內(nèi)作等腰直角三角形,連接并延長交軸于點.當(dāng)點運動時,點的位置是否發(fā)生變化?如果不變請求出它的坐標(biāo):如果變化,請說明理由.
(3)直線交于,交于點,交軸于,是否存在這樣的直線,使得?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點C,D是半圓O上的三等分點,直徑AB=4,連接AD,AC,作DE⊥AB,垂足為E,DE交AC于點F.
(1)求證:AF=DF.
(2)求陰影部分的面積(結(jié)果保留π和根號)
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點D是射線CB上的一個動點,△ADE是等邊三角形,點F是AB的中點,連接EF.
(1)如圖,點D在線段CB上時,
①求證:△AEF≌△ADC;
②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;
(2)當(dāng)∠DAB=15°時,求△ADE的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,點P是正方形ABCD內(nèi)的一點,連PA、PB、PC.
(1)將△PAB繞點B順時針旋轉(zhuǎn)90°到△P′CB的位置(如圖1).
①設(shè)AB的長為a,PB的長為b(b<a),求△PAB旋轉(zhuǎn)到△P′CB的過程中邊PA所掃過區(qū)域(圖1中陰影部分)的面積;
②若PA=2,PB=4,∠APB=135°,求PC的長.
(2)如圖2,若PA2+PC2=2PB2,請說明點P必在對角線AC上.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O的直徑AB=12,弦AC=6,∠ACB的平分線交⊙O于D,過點D作DE∥AB交CA的延長線于點E,連接AD,BD.
(1)由AB,BD,圍成的陰影部分的面積是 ;
(2)求線段DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD是△ABC的中線,AE∥BC,射線BE交AD于點F,交⊙O于點G,點F是BE的中點,連接CE.
(1)求證:四邊形ADCE為平行四邊形;
(2)若BC=2AB,求證: .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,CD⊥AB于D,AD=2,CD=4.∠BCD的角平分線CE與過點B的切線l交過點E.
(1)求⊙O半徑的長;
(2)求點E到直線BC的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,以AB為直徑作⊙O交底邊BC于D.
(1)求證:BD=CD;
(2)若AB=3,cos∠ABC=,在腰AC上取一點E使AE=,試判斷DE與⊙O的位置關(guān)系,并證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】自2017年3月起,成都市中心城區(qū)居民用水實行以戶為單位的三級階梯收費辦法:
第I級:居民每戶每月用水18噸以內(nèi)含18噸每噸收水費a元;
第Ⅱ級:居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級標(biāo)準收費,超過部分每噸收水費b元;
第Ⅲ級:居民每戶每月用水超過25噸,未超過25噸的部分按照第I、Ⅱ級標(biāo)準收費,超過部分每噸收水費c元.
設(shè)一戶居民月用水x噸,應(yīng)繳水費為y元,y與x之間的函數(shù)關(guān)系如圖所示
(1)根據(jù)圖象直接作答:a= ,b= ;
(2)求當(dāng)x≥25時y與x之間的函數(shù)關(guān)系;
(3)把上述水費階梯收費辦法稱為方案①,假設(shè)還存在方案②:居民每戶月用水一律按照每噸4元的標(biāo)準繳費,請你根據(jù)居民每戶月“用水量的大小設(shè)計出對居民繳費最實惠的方案.(寫出過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com