科目: 來源: 題型:
【題目】如圖,學(xué)校的實驗樓對面是一幢教學(xué)樓,小敏在實驗樓的窗口C處測得教學(xué)樓頂部D處的仰角為18°,教學(xué)樓底部B處的俯角為20°,教學(xué)樓的高BD=21m,求實驗樓與教學(xué)樓之間的距離AB(結(jié)果保留整數(shù)).(參考數(shù)據(jù):tan18°≈0.32,tan20°≈0.36)
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合與探究
[問題]如圖1,在中,,過點作直線平行于,點在直線上移動,角的一邊DE始終經(jīng)過點,另一邊與交于點,研究和的數(shù)量關(guān)系.
[探究發(fā)現(xiàn)]
(1)如圖2,某數(shù)學(xué)學(xué)習(xí)小組運用“從特殊到一般”的數(shù)學(xué)思想,發(fā)現(xiàn)當(dāng)點移動到使點與點重合時,很容易就可以得到請寫出證明過程;
[數(shù)學(xué)思考]
(2)如圖3,若點是上的任意一點(不含端點),受(1)的啟發(fā),另一個學(xué)習(xí)小組過點,交于點,就可以證明,請完成證明過程;
[拓展引申]
(3)若點是延長線上的任意一點,在圖(4)中補(bǔ)充完整圖形,并判斷結(jié)論是否仍然成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知PA、PB是⊙O的切線,A、B為切點,連接AO并延長,交PB的延長線于點C,連接PO,交⊙O于點D.
(1)如圖①,若∠AOP=65°,求∠C的大;
(2)如圖②,連接BD,若BD∥AC,求∠C的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)學(xué)活動課上,李老師讓同學(xué)們試著用角尺平分 (如圖所示),有兩組.
同學(xué)設(shè)計了如下方案:
方案①:將角尺的直角頂點介于射線之間,移動角尺使角尺兩邊相同的刻度位于上,且交點分別為,即,過角尺頂點的射線就是的平分線.
方案②:在邊上分別截取,將角尺的直角頂點介于射線之間,移動角尺使角尺兩邊相同的刻度與點重合,即,過角尺頂點的射線就是的平分線.請分別說明方案①與方案②是否可行?若可行,請證明; 若不可行,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是學(xué)習(xí)“分式方程應(yīng)用”時,老師板書的例題和兩名同學(xué)所列的方程.
15.3分式方程
例:有甲、乙兩個工程隊,甲隊修路米與乙隊修路米所用時間相等.乙隊每天比甲隊多修米,求甲隊每天修路的長度.
冰冰:
慶慶:
根據(jù)以上信息,解答下列問題:
(1)冰冰同學(xué)所列方程中的表示_____,慶慶同學(xué)所列方 程中的表示;
(2)兩個方程中任選一個,寫出它的等量關(guān)系;
(3)解(2)中你所選擇的方程,并解答老師的例題.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;
(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目: 來源: 題型:
【題目】為了了解某校九年級學(xué)生體育測試成績情況,現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績,并用得到的數(shù)據(jù)繪制了統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,回答下列問題:
(1)本次隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為______,圖①中的m的值為______;
(2)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(3)若該校九年級共有學(xué)生300人,如果體育成績達(dá)28分以上(含28分)為優(yōu)秀,請估計該校九年級學(xué)生體育成績達(dá)到優(yōu)秀的人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,點B,點C均落在格點上.
(1)計算△ABC的周長等于_____.
(2)點P、點Q(不與△ABC的頂點重合)分別為邊AB、BC上的動點,4PB=5QC,連接AQ、PC.當(dāng)AQ⊥PC時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點P、Q的位置是如何找到的(不要求證明).
___________________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,AB=13,AC=5,BC邊上的中線AD=6,點E在AD的延長線上,且ED=AD.
(1)求證:BE∥AC;
(2)求∠CAD的大。
(3)求點A到BC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com