科目: 來源: 題型:
【題目】在一幅長(zhǎng)80cm,寬50cm的矩形風(fēng)景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如果要使整個(gè)掛圖的面積是ycm2,設(shè)金色紙邊的寬為xcm,要求紙邊的寬度不得少于1cm,同時(shí)不得超過2cm.
(1)求出y關(guān)于x的函數(shù)解析式,并直接寫出自變量的取值范圍;
(2)此時(shí)金色紙邊的寬應(yīng)為多少cm時(shí),這幅掛圖的面積最大?求出最大面積的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,長(zhǎng)方體的長(zhǎng)為15厘米,寬為10厘米,高為20厘米,點(diǎn)B到點(diǎn)C的距離是5厘米。一只小蟲在長(zhǎng)方體表面從A爬到B的最短路程是__________
查看答案和解析>>
科目: 來源: 題型:
【題目】某地區(qū)遭受嚴(yán)重的自然災(zāi)害,空軍某部隊(duì)奉命趕災(zāi)區(qū)空投物資,已知空投物資離開飛機(jī)后在空中沿拋物線降落,拋物線頂點(diǎn)為機(jī)艙航口,如圖所示,如果空投物資離開處后下落的垂直高度米時(shí),它測(cè)處的水平距離米,那么要使飛機(jī)在垂直高度米的高空進(jìn)行空投,物資恰好準(zhǔn)確地落在居民點(diǎn)處,飛機(jī)到處的水平距離應(yīng)為________米.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA=OB,△OAB的面積是2.
(1)求線段OB的中點(diǎn)C的坐標(biāo).
(2)連結(jié)AC,過點(diǎn)O作OE⊥AC于E,交AB于點(diǎn)D.
①直接寫出點(diǎn)E的坐標(biāo).
②連結(jié)CD,求證:∠ECO=∠DCB;
(3)點(diǎn)P為x軸上一動(dòng)點(diǎn),點(diǎn)Q為平面內(nèi)一點(diǎn),以點(diǎn)A.C.P.Q為頂點(diǎn)作菱形,直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ACD中,AD=9,CD=3,△ABC中,AB=AC.
(1)如圖1,若∠CAB=60°,∠ADC=30°,在△ACD外作等邊△ADD′
①求證:BD=CD′;
②求BD的長(zhǎng).
(2)如圖2,若∠CAB=90°,∠ADC=45°,求BD的長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大;⑤當(dāng)函數(shù)值y<0時(shí),自變量x的取值范圍是x<-1或x>5.
其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為,點(diǎn)、分別為邊、上的點(diǎn),,點(diǎn)、分別為、邊上的點(diǎn),連接,若線段與的夾角為,則的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】問題探究:
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
(1)證明:AD=BE;
(2)求∠AEB的度數(shù).
問題變式:
(3)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.(Ⅰ)請(qǐng)求出∠AEB的度數(shù);(Ⅱ)判斷線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方形網(wǎng)格中建立如圖的平面直角坐標(biāo)系xOy,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(4,4),請(qǐng)解答下列問題:
(1)將△ABC向下平移5單位長(zhǎng)度,畫出平移后的并寫出點(diǎn)A對(duì)應(yīng)點(diǎn)的坐標(biāo);
(2)畫出關(guān)于y軸對(duì)稱的 并寫出的坐標(biāo);
(3)=______.(直接寫答案)
(4)在x軸上求作一點(diǎn)P,使PA+PB最。ú粚懽鞣ǎA糇鲌D痕跡)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于G,交BE于H.下列結(jié)論:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正確結(jié)論的序號(hào)是
A.①②③④B.①②③C.②④D.①③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com