科目: 來源: 題型:
【題目】在平面直角坐標系中,A(5,0),B(0,5).
(1)如圖 1,P 是 AB 上一點且,求 P 點坐標;
(2)如圖 2,D 為 OA 上一點,AC∥OB 且∠CBO=∠DCB,求∠CBD 的度數(shù);
(3)如圖 3,E 為 OA 上一點,OF⊥BE 于 F,若∠BEO=45°+∠EOF,求的值
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線 y=a(x﹣2)+1 經(jīng)過點 P(1,﹣3)
(1)求 a 的值;
(2)若點 A(m,y)、B(n ,y)(m<n<2)都在該拋物線上,試比較 y與y的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC 中,AE、BF 是角平分線,交于 O 點.
(1)如圖 1,AD 是高,∠BAC=90°,∠C=70°,求∠DAC 和∠BOA 的度數(shù);
(2)如圖 2,若 OE=OF,求∠C 的度數(shù);
(3)如圖 3,若∠C=90°,BC=8,AC=6,S△CEF=4,求 S△AOB.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是拋物線 y=ax+bx+c 的一部分,其對稱軸為直線 x=2,若其與 x 軸的一個交點為(5,0),則由圖象可知,不等式 ax+bx+c<0 的解集是________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交C點,點A的坐標為(2,0),點B的坐標為(﹣3,0),點C的坐標為(0,3),
(1)求拋物線的解析式;(2)在拋物線的對稱軸上找一點H,使CH+AH的值最小,求出點H的坐標;
(3)在拋物線上存在點P,滿足S△AOP=5,
請求出點P的坐標;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,(圖1,圖2),四邊形ABCD是邊長為4的正方形,點E在線段BC上,∠AEF=90°,且EF交正方形外角平分線CP于點F,交BC的延長線于點N, FN⊥BC.
(1)若點E是BC的中點(如圖1),AE與EF相等嗎?
(2)點E在BC間運動時(如圖2),設BE=x,△ECF的面積為y。
①求y與x的函數(shù)關系式;
②當x取何值時,y有最大值,并求出這個最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在2014年巴西世界杯足球賽前夕,某體育用品店購進一批單價為40元的球服,如果按單價60元銷售,那么一個月內(nèi)可售出240套.根據(jù)銷售經(jīng)驗,提高銷售單價會導致銷售量的減少,即銷售單價每提高5元,銷售量相應減少20套.設銷售單價為x(x≥60)元,銷售量為y套.
(1)求出y與x的函數(shù)關系式.
(2)當銷售單價為多少元時,月銷售額為14000元?
(3)當銷售單價為多少元時,才能在一個月內(nèi)獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點 P 是∠AOB 內(nèi)部一定點
(1)若∠AOB=50°,作點 P 關于 OA 的對稱點 P1,作點 P 關于 OB 的對稱點 P2,連 OP1、OP2,則∠P1OP2=___.
(2)若∠AOB=α,點 C、D 分別在射線 OA、OB 上移動,當△PCD 的周長最小時,則∠CPD=___(用 α 的代數(shù)式表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】小明家準備給邊長為6m的正方形客廳用黑色和白色兩種瓷磚鋪設,如圖所示:①黑色瓷磚區(qū)域Ⅰ:位于四個角的邊長相同的小正方形及寬度相等的回字型邊框(陰影部分),②白色瓷磚區(qū)域Ⅱ:四個全等的長方形及客廳中心的正方形(空白部分).設四個角上的小正方形的邊長為x(m).
(1)當x=0.8時,若客廳中心的正方形瓷磚鋪設的面積為16m2,求回字型黑色邊框的寬度;
(2)若客廳中心的正方形邊長為4m,白色瓷磚區(qū)域Ⅱ的總面積為26m2,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com