科目: 來源: 題型:
【題目】如圖,已知雙曲線y=(x>0)圖象上兩點,過A、B兩點分別作x軸、y軸的垂線,垂足分別為C、D,連接AD、BC,則:
(1)若A、B兩點的坐標分別是(1,4)、(4,1),求S△OAB;
(2)證明:S△ABD=S△ABC.
(3)連接CD,判斷CD與AB的位置關系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某天上午7:30,小芳在家通過滴滴打車軟件打車前往動車站搭乘當天上午8:30的動車.記汽車的行駛時間為t小時,行駛速度為v千米/小時(汽車行駛速度不超過60千米/小時).根據經驗,v,t的一組對應值如下表:
V(千米/小時) | 20 | 30 | 40 | 50 | 60 |
T(小時) | 0.6 | 0.4 | 0.3 | 0.25 | 0.2 |
(1)根據表中的數據描點,求出平均速度v(千米/小時)關于行駛時間t(小時)的函數表達式;
(2)若小芳從開始打車到上車用了10分鐘,小芳想在動車出發(fā)前半小時到達動車站,若汽車的平均速度為32千米/小時,小芳能否在預定的時間內到達動車站?請說明理由;
(3)若汽車到達動車站的行駛時間t滿足0.3<t<0.5,求平均速度v的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料,并解決問題:
(1)如圖①等邊△ABC內有一點P,若點P到頂點A、B、C的距離分別為3,4,5,求∠APB的度數.
為了解決本題,我們可以將△ABP繞頂點A旋轉到△ACP′處,此時△ACP′≌△ABP,這樣就可以利用旋轉變換,將三條線段PA、PB、PC轉化到一個三角形中,從而求出∠APB=__________;
(2)基本運用
請你利用第(1)題的解答思想方法,解答下面問題:
已知如圖②,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2;
(3)能力提升
如圖③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,點O為Rt△ABC內一點,連接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,方格中,每個小正方形的邊長都是單位1,△ABC在平面直角坐標系中的位置如圖.
(1)畫出△ABC關于y軸對稱的△A1B1C1.
(2)畫出△ABC繞點O按逆時針方向旋轉90°后的△A2B2C2.
(3)判斷△A1B1C1和△A2B2C2是不是成軸對稱?如果是,請在圖中作出它們的對稱軸.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.
(1)求∠AEC的度數;
(2)請你判斷AE、BE、AC三條線段之間的等量關系,并證明你的結論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD中,E為CD的中點,AE的垂直平分線分別交AD,BC及AB的延長線于點F,G,H,連接HE,HC,OD,連接CO并延長交AD于點M.則下列結論中:
①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC
正確結論的個數有( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線的解析式;
(2)當點P運動到什么位置時,△PAB的面積有最大值?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方形ABCD中,動點E,F分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.
(1)如圖1,當點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數量關系和位置關系,并說明理;
(2)如圖2,當E,F分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時CE:CD的值;
(3)如圖3,當E,F分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.
圖1 圖2 圖3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com