科目: 來(lái)源: 題型:
【題目】已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.
(Ⅰ)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長(zhǎng);
(Ⅱ)如圖②,若∠CAB=60°,求BD的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,點(diǎn)E為⊙O的直徑AB上一個(gè)動(dòng)點(diǎn),點(diǎn)C、D在下半圓AB上(不含A、B兩點(diǎn)),且∠CED=∠OED=60°,連OC、OD
(1)求證:∠C=∠D;
(2)若⊙O的半徑為r,請(qǐng)直接寫(xiě)出CE+ED的變化范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AD=2,E是AB的中點(diǎn),將△BEC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)E落在CB的延長(zhǎng)線上點(diǎn)F處,點(diǎn)C落在點(diǎn)A處.再將線段AF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得線段FG,連結(jié)EF、CG.
(1)求證:EF∥CG;
(2)求點(diǎn)C、點(diǎn)A在旋轉(zhuǎn)過(guò)程中形成的、與線段CG所圍成的陰影部分的面積.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,線段AB經(jīng)過(guò)圓心O,交⊙O于點(diǎn)A、C,點(diǎn)D在⊙O上,連接AD,BD,∠A=∠B=30°.
證明:(1)BD是⊙O的切線
(2)如果BD=2求OC的長(zhǎng)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,⊙O與AC相切于點(diǎn)A,且AB=AC,BC與⊙O相交于點(diǎn)D,下列說(shuō)法不正確的是().
A. ∠C = 45° B. CD=BD C. ∠BAD=∠DAC D. CD=AB
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC,OC相交于點(diǎn)E,F(xiàn),則下列結(jié)論:
①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )
A. ②④⑤⑥ B. ①③⑤⑥ C. ②③④⑥ D. ①③④⑤
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO.
(1)已知EO=,求正方形ABCD的邊長(zhǎng);
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】△ABC和△DBE是繞點(diǎn)B旋轉(zhuǎn)的兩個(gè)相似三角形,其中∠ABC與∠DBE、∠A與∠D為對(duì)應(yīng)角.
(1)如圖①,若△ABC和△DBE分別是以∠ABC與∠DBE為頂角的等腰直角三角形,且兩三角形旋轉(zhuǎn)到使點(diǎn)B、C、D在同一條直線上的位置時(shí),請(qǐng)直接寫(xiě)出線段AD與線段EC的關(guān)系;
(2)若△ABC和△DBE為含有30°角的直角三角形,且兩個(gè)三角形旋轉(zhuǎn)到如圖②的位置時(shí),試確定線段AD與線段EC的關(guān)系,并說(shuō)明理由;
(3)若△ABC和△DBE為如圖③的兩個(gè)三角形,且∠ACB=α,∠BDE=β,在繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,直線AD與EC夾角的度數(shù)是否改變?若不改變,直接用含α、β的式子表示夾角的度數(shù);若改變,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形,E為BC邊中點(diǎn),以AD為直徑的⊙O與AE交于點(diǎn)F.
(1)求證:四邊形AOCE為平行四邊形;
(2)求證:CF與⊙O相切;
(3)若F為AE的中點(diǎn),求∠ADF的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com