科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD為菱形,且A(0,4)、D(3,0).
(1)求經(jīng)過點C的反比例函數(shù)的解析式;
(2)設(shè)P是(1)中所求函數(shù)圖象上一點,以P、O、A頂點的三角形的面積與△COB的面積相等.求點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),O為原點,點A的坐標(biāo)為(1,0),點C的坐標(biāo)為(0,4),直線CM∥x軸(如圖所示).點B與點A關(guān)于原點對稱,直線y=x+b(b為常數(shù))經(jīng)過點B,且與直線CM相交于點D,連接OD.
(1)求b的值和點D的坐標(biāo);
(2)設(shè)點P在x軸的正半軸上,若△POD是等腰三角形,求點P的坐標(biāo);
(3)在(2)的條件下,如果以PD為半徑的圓P與圓O外切,求圓O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】直線AB:y=﹣x+b分別與x,y軸交于A(6,0)、B 兩點,過點B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.
(1)求點B的坐標(biāo).
(2)求直線BC的解析式.
(3)直線 EF 的解析式為y=x,直線EF交AB于點E,交BC于點 F,求證:S△EBO=S△FBO.
查看答案和解析>>
科目: 來源: 題型:
【題目】探究:如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ABMN和正方形ACDE,CN、BE交于點P. 求證:∠ANC = ∠ABE.
應(yīng)用:Q是線段BC的中點,連結(jié)PQ. 若BC = 6,則PQ = ___________.
查看答案和解析>>
科目: 來源: 題型:
【題目】兩個反比例函數(shù)y=和y=在第一象限內(nèi)的圖象如圖所示,點P在y=的圖象上,PC⊥x軸于點C,交y=的圖象于點A,PD⊥y軸于點D,交y=的圖象于點B,當(dāng)點P在y=的圖象上運動時,以下結(jié)論:①△ODB與△OCA的面積相等;②四邊形PAOB的面積不會發(fā)生變化;③PA與PB始終相等;④當(dāng)點A是PC的中點時,點B一定是PD的中點.其中一定正確的是( )
A. ①②③ B. ②③④ C. ①②④ D. ①③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,經(jīng)過點C的直線與AB的延長線交于點D,連接AC,BC,∠BCD=∠CAB.E是⊙O上一點,弧CB=弧CE,連接AE并延長與DC的延長線交于點F.
(1)求證:DC是⊙O的切線;
(2)若⊙O的半徑為3,sin∠D=,求線段AF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,已知點A(﹣1,2),B(3,4).
(1)畫出△ABO向上平移2個單位,再向左平移4個單位后所得的圖形△A′B′O′;
(2)寫出A、B、O后的對應(yīng)點A′、B′、O′的坐標(biāo);
(3)求兩次平移過程中OB共掃過的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+(m﹣3)x+m.
(1)證明:不論m取何值,該函數(shù)圖象與x軸總有兩個公共點;
(2)若該函數(shù)的圖象與y軸交于點(0,5),求出頂點坐標(biāo),并畫出該函數(shù)圖象.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com