科目: 來(lái)源: 題型:
【題目】小明在某次作業(yè)中得到如下結(jié)果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=+=1.
據(jù)此,小明猜想:對(duì)于任意銳角α,均有sin2α+sin2(90°-α)=1.
(1)當(dāng)α=30°時(shí),驗(yàn)證sin2α+sin2(90°-α)=1是否成立;
(2)小明的猜想是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)舉出一個(gè)反例.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】自2016年國(guó)慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營(yíng)商為提高其經(jīng)營(yíng)的A品牌共享單車的市場(chǎng)占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開(kāi)始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計(jì)車費(fèi) | 0 | 0.5 | 0.9 | 1.5 |
同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫(xiě)出的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營(yíng)商在該校投放A品牌共享單車能否獲利? 說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)相同的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB與CD相交于點(diǎn)P,則tan∠APD的值為______.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過(guò)的時(shí)間(單位:)之間的關(guān)系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列結(jié)論:①足球距離地面的最大高度為;②足球飛行路線的對(duì)稱軸是直線;③足球被踢出時(shí)落地;④足球被踢出時(shí),距離地面的高度是.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點(diǎn),EG⊥AF,FH⊥CE,垂足分別為G,H,設(shè)AG=x,圖中陰影部分面積為y,則y與x之間的函數(shù)關(guān)系式是( 。
A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,0),對(duì)稱軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知線段AB,按照如下的方法作圖:以AB為邊作正方形ABCD,取AD的中點(diǎn)E,連接EB,延長(zhǎng)DA到F,使EF=EB,以線段AF為邊,作正方形AFGH,那么點(diǎn)H是線段AB的黃金分割點(diǎn)嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】 如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=1,E為直角邊AB上任意一點(diǎn),以線段CE為斜邊作等腰Rt△CDE,連接AD,下列說(shuō)法:①AC⊥ED;②∠BCE=∠ACD;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD面積的最大值為,其中正確的是______________.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,將一張正方形紙片ABCD對(duì)折,使CD與AB重合,得到折痕MN后展開(kāi),E為CN上一點(diǎn),將△CDE沿DE所在的直線折疊,使得點(diǎn)C落在折痕MN上的點(diǎn)F處,連接AF,BF,BD.則下列結(jié)論中:①△ADF是等邊三角形;②tan∠EBF=2-;③S△ADF=S正方形ABCD;④BF2=DF·EF.其中正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊BC上,BE=EC,將△DCE沿DE對(duì)折至△DFE,延長(zhǎng)EF交邊AB于點(diǎn)G,連接DG、BF,給出下列結(jié)論:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④S△BEF=.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com