科目: 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,以點(diǎn)A為圓心,1為半徑作圓,E是⊙A上的任意一點(diǎn),將DE繞點(diǎn)D按逆時(shí)針旋轉(zhuǎn)90°,得到DF,連接AF,
(1)當(dāng)∠EAD=90°時(shí),AF=________________.
(2)在E的整個(gè)運(yùn)動(dòng)過(guò)程中,AF的最大值是________________.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,∠AOB=45°,點(diǎn)M,N在邊OB上,OM=x,ON=x+4,點(diǎn)P是邊OA上的點(diǎn),且△PMN是等腰三角形.在x>2的條件下,(1)當(dāng)x=______時(shí),符合條件的點(diǎn)P只有一個(gè);(2)當(dāng)x=______時(shí),符合條件的點(diǎn)P恰好有三個(gè).(兩個(gè)小題都只寫(xiě)出一個(gè)數(shù)即可)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】根據(jù)李飛與劉亮射擊訓(xùn)練的成績(jī)繪制了如圖所示的折線統(tǒng)計(jì)圖.根據(jù)圖中所提供的信息,若要推薦一位成績(jī)較穩(wěn)定的選手去參賽,應(yīng)推薦______.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】對(duì)于某一函數(shù)給出如下定義:若存在實(shí)數(shù)m,自變量的值為m 時(shí),函數(shù)值等于m,則稱m為這個(gè)函數(shù)的反向值.在函數(shù)存在反向值時(shí),該函數(shù)的最大反向值與最小反向值之差n稱為這個(gè)函數(shù)的反向距離.特別地,當(dāng)函數(shù)只有一個(gè)反向值時(shí),其反向距離n為零. 例如:圖中的函數(shù)有 4,-1兩個(gè)反向值,其反向距離 n 等于 5. 現(xiàn)有函數(shù)y=,則這個(gè)函數(shù)的反向距離的所有可能值有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)及以上的有限個(gè)D. 無(wú)數(shù)個(gè)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=5,BC=8,點(diǎn)E為AD上一個(gè)動(dòng)點(diǎn),把△ABE沿BE折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)F,連接DF,連接CF.當(dāng)點(diǎn)F落在矩形內(nèi)部,且CF=CD時(shí),AE的長(zhǎng)為( ).
A. 3B. 2.5C. 2D. 1.5
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,□ABCD中,E,F是對(duì)角線AC上的兩點(diǎn),若添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是( )
A. ∠1=∠2B. ∠3=∠4C. BE=DFD. AF=CE
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,AC和BD相交于點(diǎn)E,且DC2=CECA.
(1)求證:BC=CD;
(2)分別延長(zhǎng)AB,DC交于點(diǎn)P,若PB=OB,CD=2,求⊙O的半徑.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】對(duì)于一個(gè)三角形,設(shè)其三個(gè)內(nèi)角的度數(shù)分別為x°、y°和z°,若x、y、z滿足x2+y2=z2,我們定義這個(gè)三角形為美好三角形.
(1)△ABC中,若∠A=40°,∠B=80°,則△ABC (填“是”或“不是”)美好三角形;
(2)如圖,銳角△ABC是⊙O的內(nèi)接三角形,∠C=60°,AC=2,⊙O的直徑是2,求證:△ABC是美好三角形;
(3)已知△ABC是美好三角形,∠A=30°,求∠C的度數(shù).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元,每周可賣出180件;如果每件商品的售價(jià)每上漲1元,則每周就會(huì)少賣出5件,但每件售價(jià)不能高于50元,設(shè)每件商品的售價(jià)上漲x元(x為整數(shù)),每周的銷售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;
(2)每件商品的售價(jià)為多少元時(shí),每周可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)每件商品的售價(jià)定為多少元時(shí),每周的利潤(rùn)恰好是2145元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com