科目: 來源: 題型:
【題目】在圓O中,弦AB與CD相交于點(diǎn)E,且弧AC與弧BD相等.點(diǎn)D在劣弧AB上,聯(lián)結(jié)CO并延長(zhǎng)交線段AB于點(diǎn)F,聯(lián)結(jié)OA、OB.當(dāng)OA=,且tan∠OAB=.
(1)求弦CD的長(zhǎng);
(2)如果△AOF是直角三角形,求線段EF的長(zhǎng);
(3)如果S△CEF=4S△BOF,求線段AF的長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知一個(gè)拋物線經(jīng)過A(0,1),B(1,3),C(﹣1,1)三點(diǎn).
(1)求這個(gè)拋物線的表達(dá)式及其頂點(diǎn)D的坐標(biāo);
(2)聯(lián)結(jié)AB、BC、CA,求tan∠ABC的值;
(3)如果點(diǎn)E在該拋物線的對(duì)稱軸上,且以點(diǎn)A、B、C、E為頂點(diǎn)的四邊形是梯形,直接寫出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,△ABC中,∠ACB=90°,D在斜邊AB上,DE⊥AC,DF⊥BC,垂足分別為E,F.
(1)當(dāng)∠ACD=∠BCD時(shí),求證:四邊形DECF是正方形;
(2)當(dāng)∠BCD=∠A時(shí),求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】如果三角形的兩個(gè)內(nèi)角∠α與∠β滿足2α+β=90°,那么,我們將這樣的三角形稱為“準(zhǔn)互余三角形”.在△ABC中,已知∠C=90°,BC=3,AC=4(如圖所示),點(diǎn)D在AC邊上,聯(lián)結(jié)BD.如果△ABD為“準(zhǔn)互余三角形”,那么線段AD的長(zhǎng)為_____(寫出一個(gè)答案即可).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①在中,若點(diǎn)在邊上,且則點(diǎn)定義為的邊上的“金點(diǎn)”.
已知點(diǎn)是的邊上的“金點(diǎn)”:
①若則的長(zhǎng)為 _;
②若則的長(zhǎng)為 _;
在圖①中,若點(diǎn)是的邊的中點(diǎn),試判斷點(diǎn)是不是的“金
點(diǎn)”,并說明理由;
如圖②,已知點(diǎn)為同一直線上三點(diǎn),且在所在直線上是否存在一點(diǎn)使點(diǎn)中的某一點(diǎn)是其余三點(diǎn)圍成的三角形的“金點(diǎn)”.若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線:的項(xiàng)點(diǎn)為,交軸于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),且.
(1)求拋物線的函數(shù)解析式;
(2)過點(diǎn)的直線交拋物線于點(diǎn),交軸于點(diǎn),若的面積被軸分為1: 4兩個(gè)部分,求直線的解析式;
(3)在(2)的情況下,將拋物線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)180°得到拋物線,點(diǎn)為拋物線上一點(diǎn),當(dāng)點(diǎn)的橫坐標(biāo)為何值時(shí),為直角三角形?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①線段是的直徑,點(diǎn)在上,點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),直徑的垂線與的平行線相交于點(diǎn)連接設(shè)
求的取值范圍;
如圖②點(diǎn)是線段與的交點(diǎn),若求證:直線與相切;
如圖③當(dāng)時(shí),連接判斷四邊形的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】清代詩(shī)人高鼎的詩(shī)句“兒童散學(xué)歸來早,忙趁東風(fēng)放紙鳶”描繪出一幅充滿生機(jī)的春天景象.小明制作了一個(gè)風(fēng)箏,如圖 1 所示,AB 是風(fēng)箏的主軸,在主軸 AB上的 D、E 兩處分別固定一根系繩,這兩根系繩在 C 點(diǎn)處打結(jié)并與風(fēng)箏線連接.如圖 2,根據(jù)試飛,將系繩拉直后,當(dāng)∠CDE=75°,∠CED=60°時(shí),放飛效果佳.已知 D、E 兩點(diǎn)之間的距離為 20cm,求兩根系繩 CD、CE 的長(zhǎng). (結(jié)果保留整數(shù),不計(jì)打結(jié)長(zhǎng)度.參考數(shù)據(jù):)
查看答案和解析>>
科目: 來源: 題型:
【題目】為響應(yīng)市政府關(guān)于“垃圾不落地,市區(qū)更美麗”的主題宣傳活動(dòng),某校隨機(jī)調(diào)查了部分學(xué)生對(duì)垃圾分類知識(shí)的了解情況,對(duì)該校部分學(xué)生進(jìn)行了問卷調(diào)查,并將調(diào)查結(jié)果分為四類(其中類表示“非常了解”,類表示“比較了解”,類表示“基本了解”,類表示“不太了解”).根據(jù)調(diào)查結(jié)果得到如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.請(qǐng)解答下列問題:
了解程度 | 人數(shù)(人) | 所占百分比 |
, .
補(bǔ)全條形統(tǒng)計(jì)圖;
若該校共有學(xué)生人,估計(jì)該校對(duì)垃圾分類知識(shí)“非常了解”的有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com