科目: 來源: 題型:
【題目】為了開展陽光體育運動,堅持讓中小學生“每天鍛煉一小時”,體育局做了一個隨機調查,調查內容是:每天鍛煉是否超過1h及鍛煉未超過1h的原因.他們隨機調查了340名學生,用所得的數(shù)據制成了扇形統(tǒng)計圖和頻數(shù)分布直方圖(圖1、圖2).
根據圖示,請回答以下問題:
(1)“沒時間”的人數(shù)是 ,并補全頻數(shù)分布直方圖;
(2)2015年全市中小學生約18萬人,按此調查,可以估計2015年全市中小學生每天鍛煉超過1h的約有 萬人;
(3)在(2)的條件下,如果計劃2017年全市中小學生每天鍛煉未超過1h的人數(shù)減少到8.64萬人,求2015年至2017年鍛煉未超過1h人數(shù)的年平均降低的百分率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示:按下列步驟操作:將正方形在正六邊形中繞點B順時針旋轉,使KM邊與BC邊重合,完成第一次旋轉;再繞點C順時針旋轉,使MN邊與CD邊重合,完成第二次旋轉……連續(xù)經過六次旋轉.在旋轉的過程中,當正方形和正六邊形的邊重合時,點B,M間的距離可能是( 。
A. 0.5B. 0.7C. ﹣1D. ﹣1
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為直徑作圓,交斜邊AB于點E,D為AC的中點.連接DO,DE.則下列結論中不一定正確的是( 。
A. DO∥ABB. △ADE是等腰三角形
C. DE⊥ACD. DE是⊙O的切線
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是一副學生用的三角板,在△ABC 中,∠C=90°,∠A=60°,∠B=30°;在△A1B1C1中,∠C1=90°,∠B1A1 C1=45°,∠B1=45°,且A1B1=CB.若將邊A1C1與邊CA重合,其中點A1與點C重合.將三角板A1B1C1繞點C(A1)按逆時針方向旋轉,旋轉過的角為α,旋轉過程中邊A1C1與邊AB的交點為M,設AC=a.
(1)計算A1C1的長;
(2)當α=30°時,證明:B1C1∥AB;
(3)若a=,當α=45°時,計算兩個三角板重疊部分圖形的面積;
(4)當α=60°時,用含a的代數(shù)式表示兩個三角板重疊部分圖形的面積.
(參考數(shù)據:sin15°=,cos15°=,tan15°=2﹣,sin75°=,cos75°=,tan75°=2+)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.
(1)當m=4,n=20時.
①若點P的縱坐標為2,求直線AB的函數(shù)表達式.
②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E
(1)求證:DE=AB;
(2)以A為圓心,AB長為半徑作圓弧交AF于點G,若BF=FC=1,求扇形ABG的面積.(結果保留π)
查看答案和解析>>
科目: 來源: 題型:
【題目】為了開展陽光體育運動,某市教體局做了一個隨機調查,調查內容是:每天鍛煉是否超過1h及鍛煉未超過1h的原因.他們隨機調查了600名學生,用所得的數(shù)據制成了扇形統(tǒng)計圖和頻數(shù)分布直方圖(圖1、圖2).
根據圖示,請回答以下問題:
(1)“沒時間”的人數(shù)是 ,并補全頻數(shù)分布直方圖;
(2)2016年該市中小學生約40萬人,按此調查,可以估計2016年全市中小學生每天鍛煉超過1h的約有 萬人;
(3)在(2)的條件下,如果計劃2018年該市中小學生每天鍛煉未超過1h的人數(shù)降到7.5萬人,求2016年至2018年鍛煉未超過1h人數(shù)的年平均降低的百分率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com