科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,CE⊥BC交AD于點E,連接BE,點F是BE上一點,連接CF.
(1)如圖1,若∠ECD=30°,BC=BF=4,DC=2,求EF的長;
(2)如圖2,若BC=EC,過點E作EM⊥CF,交CF延長線于點M,延長ME、CD相交于點G,連接BG交CM于點N,若CM=MG,求證:EG=2MN.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)學(xué)綜合實踐課上,老師提出問題:如圖,有一張長為4dm,寬為3dm的長方形紙板,在紙板四個角剪去四個相同的小正方形,然后把四邊折起來(實線為剪裁線,虛線為折疊線),做成一個無蓋的長方體盒子,問小正方形的邊長為多少時,盒子的體積最大?為了解決這個問題,小明同學(xué)根據(jù)學(xué)習函數(shù)的經(jīng)驗,進行了如下的探究:
(1)設(shè)小正方形的邊長為xdm,長方體體積為ydm3,根據(jù)長方體的體積公式,可以得到y與x的函數(shù)關(guān)系式是 ,其中自變量x的取值范圍是 .
(2)列出y與x的幾組對應(yīng)值如下表:
x/dm | … | 1 | … | |||||||||
y/dm3 | … | 1.3 | 2.2 | 2.7 | 3.0 | 2.8 | 2.5 | 1.5 | 0.9 | … |
(注:補全表格,保留1位小數(shù)點)
(3)如圖,請在平面直角坐標系中描出以補全后表格中各對對應(yīng)值為坐標的點,畫出該函數(shù)圖象;
(4)結(jié)合函數(shù)圖象回答:當小正方形的邊長約為 dm時,無蓋長方體盒子的體積最大,最大值約為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】春節(jié)期間,根據(jù)習俗每家每戶都會在門口掛燈籠和對聯(lián),某商店看準了商機,購進了一批紅燈籠和對聯(lián)進行銷售,已知每幅對聯(lián)的進價比每個紅燈籠的進價少10元,且用480元購進對聯(lián)的幅數(shù)是用同樣金額購進紅燈籠個數(shù)的6倍.
(1)求每幅對聯(lián)和每個紅燈籠的進價分別是多少?
(2)由于銷售火爆,第一批銷售完了以后,該商店用相同的價格再購進300幅對聯(lián)和200個紅燈籠,已知對聯(lián)售價為6元一幅,紅燈籠售價為24元一個,銷售一段時間后,對聯(lián)賣出了總數(shù)的,紅燈籠售出了總數(shù)的,為了清倉,該店老板對剩下的對聯(lián)和紅燈籠以相同的折扣數(shù)進行打折銷售,并很快全部售出,求商店最低打幾折可以使得這批貨的總利潤率不低于90%?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.
(1)證明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的長,
查看答案和解析>>
科目: 來源: 題型:
【題目】“驢友”小明分三次從M地出發(fā)沿著不同的線路線,B線,C線去N地在每條線路上行進的方式都分為穿越叢林、涉水行走和攀登這三種他涉水行走4小時的路程與攀登6小時的路程相等線、C線路程相等,都比A線路程多,A線總時間等于C線總時間的,他用了3小時穿越叢林、2小時涉水行走和2小時攀登走完A線,在B線中穿越叢林、涉水行走和攀登所用時間分別比A線上升了,,,若他用了x小時穿越叢林、y小時涉水行走和z小時攀登走完C線,且x,y,z都為正整數(shù),則______.
查看答案和解析>>
科目: 來源: 題型:
【題目】小雪和小松分別從家和圖書館出發(fā),沿同一條筆直的馬路相向而行.小雪開始跑步,中途在某地改為步行,且步行的速度為跑步速度的一半,小雪先出發(fā)5分鐘后,小松才騎自行車勻速回家.小雪到達圖書館恰好用了35分鐘.兩人之間的距離y(m)與小雪離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖所示,則當小松剛到家時,小雪離圖書館的距離為____米.
查看答案和解析>>
科目: 來源: 題型:
【題目】若關(guān)于x的不等式組無解,且關(guān)于y的分式方程有非正整數(shù)解,則符合條件的所有整數(shù)k的值之和為( 。
A.﹣7B.﹣12C.﹣20D.﹣34
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列4個結(jié)論:①abc<0;②2a+b=0;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】某游樂場新推出了一個“極速飛車”的項目.項目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項目難度.其中斜坡軌道BC的坡度(或坡比)為i=1:2,BC=12米,CD=8米,∠D=36°,(其中點A、B、C、D均在同一平面內(nèi))則垂直升降電梯AB的高度約為( 。┟祝ň_到0.1米,參考數(shù)據(jù):tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)
A.5.6B.6.9C.11.4D.13.9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com