科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(-1,0),頂點坐標為(1,m),與y軸交點在(0,3),(0,4)之(不包含端點),現(xiàn)有下列結(jié)論:①3a+b>0;②-<a<-1;③關(guān)于x的方程ax2+bx+c=m-2有兩個不相等的實數(shù)根:④若點M(-1.5,y1),N(2.5,y2)是函數(shù)圖象上的兩點,則y1=y2.其中正確結(jié)論的個數(shù)為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O, BC是⊙O 的直徑,點A是⊙O上的定點,AD平分∠BAC交⊙O于點D,DG∥BC,交AC延長線于點G.
(1)求證:DG與⊙O相切;
(2)作BE⊥AD于點E,CF⊥AD于點F,試判斷線段BE,CF、EF三者之間的數(shù)量關(guān)系,并證明你的結(jié)論(不用尺規(guī)作圖的方法補全圖形).
查看答案和解析>>
科目: 來源: 題型:
【題目】在陽光大課間活動中,某校開展了立定跳遠、實心球、長跑等體育活動,為了了解九年一班學(xué)生的立定跳遠成績的情況,對全班學(xué)生的立定跳遠測試成績進行統(tǒng)計,并繪制了以下不完整的頻數(shù)分布直方圖和扇形圖,根據(jù)圖中信息解答下列問題.
(1)求九年一班學(xué)生總?cè)藬?shù),并補全頻數(shù)分布直方圖(標注頻數(shù));
(2)求2.05≤a<2.25成績段在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù);
(3)直接寫出九年一班學(xué)生立定跳遠成績的中位數(shù)所在的成績段;
(4)九年一班在2.25≤a<2.45成績段中有男生3人,女生2人,現(xiàn)要從這5人中隨機抽取2人參加學(xué)校運動會,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點、點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖, 已知拋物線與y軸相交于C,與x軸相交于A、B,點A的坐標為(2,0),點C的坐標為(0,-1).
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連結(jié)DC,當(dāng)△DCE的面積最大時,求點D的坐標;
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形,若存在,求點P的坐標,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線y=x,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按此做法進行下去,點An的坐標為__.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知:在矩形ABCD中,O為AC的中點,直線l經(jīng)過點B,且直線l繞著點B旋轉(zhuǎn),AM⊥l于點M,CN⊥l于點N,連接OM,ON
(1)當(dāng)直線l經(jīng)過點D時,如圖1,則OM、ON的數(shù)量關(guān)系為 ;
(2)當(dāng)直線l與線段CD交于點F時,如圖2(1)中的結(jié)論是否仍然成立?若成立,請加以證明;若不成立,請說明理由;
(3)當(dāng)直線l與線段DC的延長線交于點P時,請在圖3中作出符合條件的圖形,并判斷(1)中的結(jié)論是否仍然成立?不必說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,半徑為2的圓O與含30°角的直角三角板ABC的AB邊切于點A,將直角三角板沿BA邊所在的直線向右平移,當(dāng)平移到AC與圓O相切時,該直角三角板的平移距離為( )
A. B. C. 1D. 2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖.在平行四邊形ABCD中,過點B作BM⊥AC于點E,交CD于點M,過點D作DN⊥AC于點F,交AB于點N.
(1)求證:四邊形BMDN是平行四邊形;
(2)已知AF=5,EM=3,求AN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com