科目: 來源: 題型:
【題目】如圖,已知拋物線y=x2+ax﹣3交x軸于點(diǎn)A,D兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)A的直線與x軸下方的拋物線交于點(diǎn)B,已知點(diǎn)A的坐標(biāo)是(﹣1,0).
(1)求a的值;
(2)連結(jié)BD,求△ADB面積的最大值;
(3)當(dāng)△ADB面積最大時(shí),求點(diǎn)C到直線AB的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)O是Rt△ABC斜邊AB上的一點(diǎn),⊙O經(jīng)過點(diǎn)A與BC相切于點(diǎn)D,分別交AB,AC于E,F,OA=2cm,AC=3cm.
(1)求BE的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】永康市某校在課改中,開設(shè)的選修課有:籃球,足球,排球,羽毛球,乒乓球,學(xué)生可根據(jù)自己的愛好選修一門,李老師對九(1)班全班同學(xué)的選課情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖).
(1)該班共有學(xué)生 人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求“籃球”所在扇形圓心角的度數(shù);
(3)九(1)班班委4人中,甲選修籃球,乙和丙選修足球,丁選修排球,從這4人中任選2人,請你用列表或畫樹狀圖的方法,求選出的2人中恰好為1人選修籃球,1人選修足球的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,為了測量建筑物AC的高度,從距離建筑物底部C處50米的點(diǎn)D(點(diǎn)D與建筑物底部C在同一水平面上)出發(fā),沿坡度i=1:2的斜坡DB前進(jìn)10米到達(dá)點(diǎn)B,在點(diǎn)B處測得建筑物頂部A的仰角為53°,求建筑物AC的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin53°≈0.798,cos53°≈0.602,tan53°≈1.327.)
查看答案和解析>>
科目: 來源: 題型:
【題目】我們常見的汽車玻璃升降器如圖①所示,圖②和圖③是升降器的示意圖,其原理可以看作是主臂PB繞固定的點(diǎn)O旋轉(zhuǎn),當(dāng)端點(diǎn)P在固定的扇形齒輪上運(yùn)動(dòng)時(shí),通過叉臂式結(jié)構(gòu)(點(diǎn)B可在MN上滑動(dòng))的玻璃支架MN帶動(dòng)玻璃沿導(dǎo)軌作上下運(yùn)動(dòng)而達(dá)到玻璃升降目的.點(diǎn)O和點(diǎn)P,A,B在同一直線上.當(dāng)點(diǎn)P與點(diǎn)E重合時(shí),窗戶完全閉合(圖②),此時(shí)∠ABC=30°;當(dāng)點(diǎn)P與點(diǎn)F重合時(shí),窗戶完全打開(圖③).已知的半徑OP=5cm,=cm,OA=AB=AC=20cm.
(1)當(dāng)窗戶完全閉合時(shí),OC=_____cm.
(2)當(dāng)窗戶完全打開時(shí),PC=_____cm.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示,下列說法中①abc<0;②2a+b=0;③當(dāng)﹣1<x<3時(shí),y>0;④2c﹣3b<0.正確的結(jié)論有( 。
A. ①②B. ②③④C. ①③D. ①②④
查看答案和解析>>
科目: 來源: 題型:
【題目】王爺爺上午8:00從家出發(fā),外出散步,到老年閱覽室看了一會(huì)兒報(bào)紙,繼續(xù)以相同的速度散步一段時(shí)間,然后回家.如圖描述了王爺爺在散步過程中離家的路程s(米)與所用時(shí)間t(分)之間的函數(shù)關(guān)系,則下列信息錯(cuò)誤的是( 。
A. 王爺爺看報(bào)紙用了20分鐘
B. 王爺爺一共走了1600米
C. 王爺爺回家的速度是80米/分
D. 上午8:32王爺爺在離家800米處
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于A(﹣1,0),B(5,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點(diǎn)C,作CD垂直x軸于點(diǎn)D,連接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個(gè)單位,當(dāng)點(diǎn)C落在拋物線上時(shí),求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖AB是⊙O的直徑,PA與⊙O相切于點(diǎn)A,BP與⊙O相交于點(diǎn)D,C為⊙O上的一點(diǎn),分別連接CB、CD,∠BCD=60°.
(1)求∠ABD的度數(shù);
(2)若AB=6,求PD的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com