科目: 來源: 題型:
【題目】如圖,△ABC三個頂點(diǎn)坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)將△ABC向右平移4個單位,請畫出平移后的△A1B1C1;
(2)以原點(diǎn)O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請?jiān)诰W(wǎng)格內(nèi)畫出△A2B2C2;
(3)請?jiān)?/span>x軸上找出點(diǎn)P,使得點(diǎn)P到B與點(diǎn)A1距離之和最小,請直接寫出P點(diǎn)的坐標(biāo) .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5,AC=3,BC為半圓O的直徑,將△ABC沿射線CB方向平移得到△A1B1C1.當(dāng)A1B1與半圓O相切于點(diǎn)D時,平移的距離的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為了改善辦公條件,計(jì)劃從廠家購買兩種型號電腦.已知每臺種型號電腦價格比每臺種型號電腦價格多0.1萬元,且用10萬元購買種型號電腦的數(shù)量與用8萬購買種型號電腦的數(shù)量相同.
(1)求兩種型號電腦每臺價格各為多少萬元?
(2)學(xué)校預(yù)計(jì)用不多于9.2萬元的資金購進(jìn)這兩種電腦共20臺,其中種型號電腦至少要購進(jìn)10臺,請問有哪幾種購買方案?
查看答案和解析>>
科目: 來源: 題型:
【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BD交BD于點(diǎn)E,點(diǎn)F,M分別是AB,BC的中點(diǎn),BN平分∠ABE交AM于點(diǎn)N,AB=AC=BD,連接MF,NF.
(1)判斷△BMN的形狀,并證明你的結(jié)論;
(2)判斷△MFN與△BDC之間的關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次活動共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,AD=4,點(diǎn)F是AB的中點(diǎn),過點(diǎn)F作FE⊥AD,垂足為E,將△AEF沿點(diǎn)A到點(diǎn)B的方向平移,得到△A'E'F',設(shè)點(diǎn)P、P'分別是EF、E'F'的中點(diǎn),當(dāng)點(diǎn)A'與點(diǎn)B重合時,四邊形PP'CD的面積為( 。
A. 7B. 6C. 8D. 8﹣4
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時停止運(yùn)動,則此時點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為( 。
A. (,0) B. (2,0) C. (,0) D. (3,0)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(1,0),C(0,﹣3).
(1)求拋物線的解析式;
(2)若點(diǎn)P為第三象限內(nèi)拋物線上的一點(diǎn),設(shè)△PAC的面積為S,求S的最大值并求出此時點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線的頂點(diǎn)為D,DE⊥x軸于點(diǎn)E,在y軸上是否存在點(diǎn)M,使得△ADM是直角三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】問題情填,
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動,如圖1,將矩形紙片ABCD沿對角線AC剪開,得到△ABC和△ACD、并且量得AB=2cm,AC=4cm.
操作發(fā)現(xiàn):
(1)將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)∠α,使∠α=∠BAC,得到加圖2所示的△AC′D,過點(diǎn)C作AC′的平行線,與DC′的延長線交于點(diǎn)E,則四邊形ACEC'的形狀是_________;
(2)創(chuàng)新小組將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使B,A,D三點(diǎn)在同一條直線上,得到如圖3所示的△AC′D,連接CC′,取CC'的中點(diǎn)F,連精AF并延長到點(diǎn)G,使FG=AF,連接CG,C′G,得到四邊形ACGC′,發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC沿著BD方向平移,使點(diǎn)B與點(diǎn)A重合,此時A點(diǎn)平移至A′點(diǎn),A′C與BC′相交于點(diǎn)H.如圖4所示,連接CC',試求CH的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com