相關(guān)習題
 0  363308  363316  363322  363326  363332  363334  363338  363344  363346  363352  363358  363362  363364  363368  363374  363376  363382  363386  363388  363392  363394  363398  363400  363402  363403  363404  363406  363407  363408  363410  363412  363416  363418  363422  363424  363428  363434  363436  363442  363446  363448  363452  363458  363464  363466  363472  363476  363478  363484  363488  363494  363502  366461 

科目: 來源: 題型:

【題目】定義:到三角形的兩邊距離相等的點,叫做此三角形的準內(nèi)心.

1)求證:等腰三角形底邊的中點是它的準內(nèi)心;

2)如圖,在△ABC中,以AC為直徑作⊙OBC于點D,過點D作⊙O的切線EF,分別交ABAC的延長線于點E,F.若點D是△ABC的準內(nèi)心,AE6,tanCFD,求EB的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】我國著名的數(shù)學家華羅庚曾巧解開立方的智力題:問題:59319是一個整數(shù)的立方,求這個整數(shù)?

解答:因為:10100,所以:是兩位整數(shù);

因為:整數(shù)59319的末位上的數(shù)字是9,而整數(shù)09的立方中,只有93729的末位數(shù)字是9,

所以:的末位數(shù)字是9;又因為劃去59319的后面三位319得到59,而34,

所以的十位數(shù)字是3;因此39

應用:已知22x23+2211840,其中x是整數(shù).則x的值為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】二次函數(shù)yx2+bxt的對稱軸為x2.若關(guān)于x的一元二次方程x2+bxt0在﹣1x3的范圍內(nèi)有實數(shù)解,則t的取值范圍是( 。

A. 4t5B. 4t<﹣3C. t≥﹣4D. 3t5

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,拋物線的對稱軸為直線x=2,拋物線與x軸交于點A和點B,與y軸交于點C,且點A的坐標為(-10).

1)求拋物線的函數(shù)表達式;

2)將拋物線圖象x軸下方部分沿x軸向上翻折,保留拋物線在x軸上的點和x軸上方圖象,得到的新圖象與直線y=t恒有四個交點,從左到右四個交點依次記為D,E,F,G.當以EF為直徑的圓過點Q21)時,求t的值;

3)在拋物線上,當mxn時,y的取值范圍是my≤7,請直接寫出x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°AB=8cmAC=6cm,若動點DB出發(fā),沿線段BA運動到點A為止(不考慮DB,A重合的情況),運動速度為2cm/s,過點DDEBCAC于點E,連接BE,設動點D運動的時間為xs),AE的長為ycm).

1)求y關(guān)于x的函數(shù)表達式,并寫出自變量x的取值范圍;

2)當x為何值時,△BDE的面積S有最大值?最大值為多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,拋物線p0),點F0,p),直線ly=-p,已知拋物線上的點到點F的距離與到直線l的距離相等,過點F的直線與拋物線交于A,B兩點,AA1l,BB1l,垂足分別為A1、B1,連接A1F,B1F,A1OB1O.若A1F=a,B1F=b、則△A1OB1的面積=____.(只用a,b表示).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,反比例函數(shù)和一次函數(shù)y=kx-1的圖象相交于Am,2m),B兩點.

1)求一次函數(shù)的表達式;

2)求出點B的坐標,并根據(jù)圖象直接寫出滿足不等式x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3BC=4M、N在對角線AC上,且AM=CN,E、F分別是ADBC的中點.

1)求證:△ABM≌△CDN

2)點G是對角線AC上的點,∠EGF=90°,求AG的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,DAC中點,直線OD與⊙O相交于EF兩點,P是⊙O外一點,P在直線OD上,連接PA,PCAF,且滿足∠PCA=ABC

1)求證:PA是⊙O的切線;

2)證明:;

3)若BC=8tanAFP=,求DE的長.

查看答案和解析>>

同步練習冊答案