科目: 來源: 題型:
【題目】已知銳角△ABC內接于O,AD⊥BC.垂足為D.
(1)如圖1,若,BD=DC,求∠B的度數(shù).
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點F,過點B作BG∥AD交⊙O于點G,在AB邊上取一點H,使得AH=BG;
①連接CG,試探究∠ABC,∠ACG的數(shù)量關系,并給予證明.
②求證:△AFH是等腰三角形.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料:小科遇到這樣一個問題:如圖1,△ABC是等邊三角形,點P是三角形內部一點,且PA=3,PB=4,PC=5,求∠APB的度數(shù).
小科是這樣思考的:如圖2,將AP繞著點A逆時針旋轉60°得到AP′,連接P′C,P′P,可以根據(jù)邊角邊證明△APB≌△AP′C,進而通過判定得到兩個特殊的三角形,解決問題.
(1)小科遇到的問題中,∠APB的度數(shù)是 ;(請直接寫出答案)
參考小科同學的思路,解決下列問題:
(2)如圖3,在正方形ABCD內有一點P,且PA=2,PB=2,PD=2,
①求∠APB的度數(shù);②求正方形的邊長
查看答案和解析>>
科目: 來源: 題型:
【題目】我省某工廠為全運會設計了一款成本每件20元的工藝品,投放市場試銷后發(fā)現(xiàn)銷售量y(件)是售價x(元/件)的一次函數(shù),當售價為23元/件時,每天銷售量為790件;當售價為25元/件,每天銷售量為750件.
(1)求y與x的函數(shù)關系;
(2)如果該工藝品最高不超過每件30元,那么售價定位每件多少元時,工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x+3.
(1)用配方法求其圖象的頂點C的坐標,并描述該函數(shù)的函數(shù)值隨自變量的增減而變化的情況;
(2)求函數(shù)圖象與x軸的交點A,B的坐標,及△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點C逆時針旋轉得到△A′B′C,M是BC的中點,P是A′B′的中點,連接PM,若BC=2,∠BAC=30°,則線段PM的最大值是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC三個頂點分別是A(2,2),B(4,0),C(4,﹣4)
(1)以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在y軸右側畫出△A2B2C2
(2)求出∠A2C2B2的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:若某拋物線上有兩點A、B關于原點對稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)y=ax2-2mx+c(a,m,c均為常數(shù)且ac≠0)是“完美拋物線”:
(1)試判斷ac的符號;
(2)若c=-1,該二次函數(shù)圖象與y軸交于點C,且S△ABC=1.
①求a的值;
②當該二次函數(shù)圖象與端點為M(-1,1)、N(3,4)的線段有且只有一個交點時,求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知∠POQ=60°,點A、B分別在射線OQ、OP上,且OA=2,OB=4,∠POQ的平分線交AB于C,一動點N從O點出發(fā),以每秒1個單位長度的速度沿射線OP向點B作勻速運動,MN⊥OB交射線OQ于點M.設點N運動的時間為t(0<t<2)秒.
(1)求證:△ONM∽△OAB;
(2)當MN=CM時,求t的值;
(3)設△MNC與△OAB重疊部分的面積為S.請求出S關于t的函數(shù)表達式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是上半圓的弦,過點C作⊙O的切線DE交AB的延長線于點E,過點A作切線DE的垂線,垂足為D,且與⊙O交于點F,設∠DAC,∠CEA的度數(shù)分別是α,β.
(1)用含α的代數(shù)式表示β,并直接寫出α的取值范圍;
(2)連接OF與AC交于點O′,當點O′是AC的中點時,求α,β的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com