科目: 來源: 題型:
【題目】如圖,把一塊含有30°角的直角三角尺放置在平面直角坐標系中,BC邊落在x軸的正半軸上,點A在第一象限內,∠ACB=90°,∠CAB=30°,AC=4,沿著AB翻折三角尺,直角頂點C落在C′處.設A、C′兩點的橫坐標分別為m、n.
(1)試用m的代數式表示n;
(2)若反比例函數y=(x>0)的圖象恰好經過A、C′兩點,求k的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,點A的坐標為(0,7),點B的坐標為(0,3),點C的坐標為(3,0).
(1)在圖中作出△ABC的外接圓⊙P(保留必要的作圖痕跡,不寫作法)
(2) 若在x軸的正半軸上有一點D(異與C點),且∠ADB=∠ACB,則點D的坐標為 .
(3)若用扇形PAC圍成一個圓錐,那么這個圓錐的底面半徑為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】《九章算術》是中國傳統(tǒng)數學最重要的著作,奠定了中國傳統(tǒng)數學的基本框架.其中卷第九“勾股”章,主要講述了以測量問題為中心的直角三角形三邊互求的關系.其中記載:“今有邑,東西七里,南北九里,各中開門,出東門一十五里有木,問:出南門幾何步而見木?”譯文:“如圖,今有一座長方形小城,東西向城墻長7里,南北向城墻長9里,各城墻正中均開一城門.走出東門15里處有棵大樹,問走出南門多少步恰好能望見這棵樹?”(注:1里=300步)你的計算結果是:出南門________步而見木.
查看答案和解析>>
科目: 來源: 題型:
【題目】某水果公司購進10 000kg蘋果,公司想知道蘋果的損壞率,從所有蘋果中隨機抽取若干進行統(tǒng)計,部分結果如下表:
蘋果總質量n(kg) | 100 | 200 | 300 | 400 | 500 | 1000 |
損壞蘋果質量m(kg) | 10.50 | 19.42 | 30.63 | 39.24 | 49.54 | 101.10 |
蘋果損壞的頻率 (結果保留小數點后三位) | 0.105 | 0.097 | 0.102 | 0.098 | 0.099 | 0.101 |
估計這批蘋果損壞的概率為_____(結果保留小數點后一位),損壞的蘋果約有______kg.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知A,B為反比例函數y1=圖象上兩點,連接AB,線段AB經過點O,C是反比例函數y2=(k<0)在第二象限內的圖象上一點,當△CAB是以AB為底的等腰三角形,且時,k的值為( 。
A.﹣B.﹣3C.﹣4D.﹣
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以AD為直徑的半圓O經過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為( 。
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠D=∠B,補充下列條件之一,不一定能判定△ABC和△ADE相似的是( 。
A.∠ACB=∠AEDB.∠CAE=∠BADC.∠BED=∠EACD.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線經過點和點,與軸交于點.
(1)求此拋物線的解析式;
(2)若點是直線下方的拋物線上一動點(不點,重合),過點作軸的平行線交直線于點,設點的橫坐標為.
①用含的代數式表示線段的長;
②連接,,求的面積最大時點的坐標;
(3)設拋物線的對稱軸與交于點,點是拋物線的對稱軸上一點,為軸上一點,是否存在這樣的點和點,使得以點、、、為頂點的四邊形是菱形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,M、N分別是射線CB和射線DC上的動點,且始終∠MAN=45°.
(1)如圖1,當點M、N分別在線段BC、DC上時,請直接寫出線段BM、MN、DN之間的數量關系;
(2)如圖2,當點M、N分別在CB、DC的延長線上時,(1)中的結論是否仍然成立,若成立,給予證明,若不成立,寫出正確的結論,并證明;
(3)如圖3,當點M、N分別在CB、DC的延長線上時,若CN=CD=6,設BD與AM的延長線交于點P,交AN于Q,直接寫出AQ、AP的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com