相關習題
 0  365446  365454  365460  365464  365470  365472  365476  365482  365484  365490  365496  365500  365502  365506  365512  365514  365520  365524  365526  365530  365532  365536  365538  365540  365541  365542  365544  365545  365546  365548  365550  365554  365556  365560  365562  365566  365572  365574  365580  365584  365586  365590  365596  365602  365604  365610  365614  365616  365622  365626  365632  365640  366461 

科目: 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A1,0),B﹣3,0)兩點.

1)求該拋物線的解析式;

2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由;

3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°AD平分∠CABBCD點,OAB上一點,經過A、D兩點的⊙O分別交AB、AC于點E、F

1)用尺規(guī)補全圖形(保留作圖痕跡,不寫作法);

2)求證:BC與⊙O相切;

3)當AD=2,∠CAD=30°時,求劣弧AD的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】為加快城鄉(xiāng)對接,建設全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.

(1)開通隧道前,汽車從A地到B地大約要走多少千米?

(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,B、E、C,F在一條直線上,ABDE,ACDF,BE=CF,連接AD.

求證:四邊形ABED是平行四邊形.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,放置的OAB1B1A1B2,B2A2B3,都是邊長為2的等邊三角形,邊AOY軸上,點B1、B2、B3都在直線y=x上,則點A2019的坐標為__________________

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y=x0)與AB相交于點D,與BC相交于點E,若BD=3AD,且ODE的面積是9,則k=(  )

A.B.9C.D.3

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,對隔離直線給出如下定義:點是圖形上的任意一點,點是圖形上的任意一點,若存在直線滿足,則稱直線是圖形隔離直線,如圖,直線是函數(shù)的圖像與正方形的一條隔離直線”.

1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形隔離直線的為 .

2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標軸平行,直角頂點的坐標是,⊙O的半徑為,是否存在與⊙O隔離直線?若存在,求出此隔離直線的表達式:若不存在,請說明理由;

3)正方形的一邊在軸上,其它三邊都在軸的左側,點是此正方形的中心,若存在直線是函數(shù)的圖像與正方形隔離直線,請直接寫出的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,二次函數(shù)(其中)的圖像與軸分別交于點、(點位于的左側),與軸交于點,過點作軸的平行線交二次函數(shù)圖于點.

1)當時,求、兩點的坐標;

2)過點作射線交二次函數(shù)的圖像與點,使得,求點的坐標(用含的式子表示)

3)在第問的條件下,二次函數(shù)的頂點為,過點、作直線與軸于點,試求出以、的長度為三邊長的三角形的面積(用含的式子表示)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知BCAC,圓心OAC上,點M與點C分別是AC與⊙O的交點,點DMB與⊙O的交點,點PAD延長線與BC的交點,且ADAOAMAP

1)連接OP,證明:△ADM∽△APO;

2)證明:PDΘO的切線;

3)若AD24,AMMC,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為迎接年中、日、韓三國青少年橄欖球比賽,南雅中學計劃對面積為運動場進行塑膠改造.經投標,由甲、乙兩個工程隊來完成,已知甲隊每天能改造的面積是乙隊每天能改造面積的倍,并且在獨立完成面積為的改造時,甲隊比乙隊少用.

1)求甲、乙兩工程隊每天能完成塑膠改造的面積;

2)設甲工程隊施工天,乙工程隊施工天,剛好完成改造任務,求的函數(shù)解析式;

3)若甲隊每天改造費用是萬元,乙隊每天改造費用是萬元,且甲、乙兩隊施工的總天數(shù)不超過天,如何安排甲、乙兩隊施工的天數(shù),使施工總費用最低?并求出最低的費用.

查看答案和解析>>

同步練習冊答案