科目: 來(lái)源: 題型:
【題目】如圖,以AB為直徑作半圓O,點(diǎn)C是半圓上一點(diǎn),∠ABC的平分線交⊙O于E,D為BE延長(zhǎng)線上一點(diǎn),且∠DAE=∠FAE.
(1)求證:AD為⊙O切線;
(2)若sin∠BAC=,求tan∠AFO的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線于對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,防洪大堤的橫截面ABGH是梯形,背水坡AB的坡度i=1:(垂直高度AE與水平寬度BE的比),AB=20米,BC=30米,身高為1.7米的小明(AM=1.7米)站在大堤A點(diǎn)(M,A,E三點(diǎn)在同一條直線上),測(cè)得電線桿頂端D的仰角∠=20°.
(1)求∠ABC;
(2)求電線桿CD的高度.(結(jié)果精確到個(gè)位,參考數(shù)據(jù)sin20°≈0.3,cos20°≈0.9,tan20°≈0.4,≈1.7)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,A,P,B,C是⊙O上的四個(gè)點(diǎn),∠APC=∠CPB=60°.
(1)判斷△ABC的形狀,并證明你的結(jié)論;
(2)若BC的長(zhǎng)為6,求⊙O的半徑.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AD⊥BC,垂足為D.給出下列四個(gè)結(jié)論:①sinα=sinB;②sinα=cosβ;③;④.其中正確的結(jié)論有____________.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知一塊等腰三角形鋼板的底邊長(zhǎng)為60cm,腰長(zhǎng)為50 cm,能從這塊鋼板上截得得最大圓得半徑為________cm
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,直線y=kx+b與x軸、y軸分別交于點(diǎn)A,B,且OA,OB的長(zhǎng)(OA>OB)是方程x2-10x+24=0的兩個(gè)根,P(m,n)是第一象限內(nèi)直線y=kx+b上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合).
(1)求直線AB的解析式.
(2)C是x軸上一點(diǎn),且OC=2,求△ACP的面積S與m之間的函數(shù)關(guān)系式;
(3)在x軸上是否有在點(diǎn)Q,使以A,B,Q為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】我國(guó)中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過(guò)市場(chǎng)銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).
(1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,D是BC邊的中點(diǎn),以D為頂點(diǎn)作一個(gè)120°的角,角的兩邊分別交直線AB,AC于M,N兩點(diǎn),以點(diǎn)D為中心旋轉(zhuǎn)∠MDN(∠MDN的度數(shù)不變),若DM與AB垂直時(shí)(如圖①所示),易證BM +CN =BD.
(1)如圖②,若DM與AB不垂直時(shí),點(diǎn)M在邊AB上,點(diǎn)N在邊AC上,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(2)如圖③,若DM與AB不垂直時(shí),點(diǎn)M在邊AB.上,點(diǎn)N在邊AC的延長(zhǎng)線上,上述結(jié)論是否成立?若不成立,請(qǐng)寫出BM,CN,BD之間的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°.將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM
(2)當(dāng)AE=1時(shí),求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com