科目: 來源: 題型:
【題目】某校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內倡導“光盤行動”,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調查了部分同學這餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.
(1)這次被調查的同學共有_______名;
(2)把條形圖補充完整;
(3)校學生會通過數(shù)據(jù)分析,估計這次被調查的所有學生一餐浪費的食物可以供15名成年人用一餐.據(jù)此估算,該校1800名學生一餐浪費的食物可供多少成年人食用一餐?
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,對“隔離直線”給出如下定義:點是圖形上的任意一點,點是圖形上的任意一點,若存在直線:滿足且,則稱直線:是圖形與的“隔離直線”,如圖,直線:是函數(shù)的圖像與正方形的一條“隔離直線”.
(1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形的“隔離直線”的為 .
(2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標軸平行,直角頂點的坐標是,⊙O的半徑為,是否存在與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達式:若不存在,請說明理由;
(3)正方形的一邊在軸上,其它三邊都在軸的左側,點是此正方形的中心,若存在直線是函數(shù)的圖像與正方形的“隔離直線”,請直接寫出的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)(其中)的圖象與x軸分別交于點A、B(點A位于B的左側),與y軸交于點C,過點C作x軸的平行線CD交二次函數(shù)圖像于點D.
(1)當m2時,求A、B兩點的坐標;
(2)過點A作射線AE交二次函數(shù)的圖像于點E,使得BAEDAB.求點E的坐標(用含m的式子表示);
(3)在第(2)問的條件下,二次函數(shù)的頂點為F,過點C、F作直線與x軸于點G,試求出GF、AD、AE的長度為三邊長的三角形的面積(用含m的式子表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知BCAC,圓心O在AC上,點M與點C分別是AC與⊙O的交點,點D是MB與⊙O的交點,點P是AD延長線與BC的交點,且ADAOAMAP,連接OP.
(1)證明:MD//OP;
(2)求證:PD是⊙O的切線;
(3)若AD24,AMMC,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為迎接年中、日、韓三國青少年橄欖球比賽,南雅中學計劃對面積為運動場進行塑膠改造.經投標,由甲、乙兩個工程隊來完成,已知甲隊每天能改造的面積是乙隊每天能改造面積的倍,并且在獨立完成面積為的改造時,甲隊比乙隊少用天.
(1)求甲、乙兩工程隊每天能完成塑膠改造的面積;
(2)設甲工程隊施工天,乙工程隊施工天,剛好完成改造任務,求與的函數(shù)解析式;
(3)若甲隊每天改造費用是萬元,乙隊每天改造費用是萬元,且甲、乙兩隊施工的總天數(shù)不超過天,如何安排甲、乙兩隊施工的天數(shù),使施工總費用最低?并求出最低的費用.
查看答案和解析>>
科目: 來源: 題型:
【題目】(7分)某中學1000名學生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:
成績分組 | 頻數(shù) | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合計 | ■ | 1 |
(1)寫出a,b,c的值;
(2)請估計這1000名學生中有多少人的競賽成績不低于70分;
(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學參加環(huán)保知識宣傳活動,求所抽取的2名同學來自同一組的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點的坐標為,點,分別在軸,軸的正半軸上運動,且,下列結論:
①
②當時四邊形是正方形
③四邊形的面積和周長都是定值
④連接,,則,其中正確的有( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y ax2 2ax 3a2 3(其中x是自變量),當x 2時,y隨x的增大而增大,且3 x 0時,y的最大值為9,則a的值為( ).
A.1或B.或C.D.1
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線 (為常數(shù))與軸交于點和與軸交于點,點為拋物線頂點.
(Ⅰ)當時,求點,點的坐標;
(Ⅱ)①若頂點在直線上時,用含有的代數(shù)式表示;
②在①的前提下,當點的位置最高時,求拋物線的解析式;
(Ⅲ)若,當滿足值最小時,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com