4.若函數(shù)y=f(x+1)是偶函數(shù),則下列說法正確的序號是(1)(2)(4)
(1)y=f(x)圖象關于直線x=1對稱     
(2)y=f(x+1)圖象關于y軸對稱
(3)必有f(1+x)=f(-1-x)成立  
(4)必有f(1+x)=f(1-x)成立.

分析 根據(jù)偶函數(shù)的定義“對于函數(shù)f(x)的定義域內任意一個x,都滿足f(x)=f(-x),則函數(shù)f(x)為偶函數(shù)”及“偶函數(shù)的圖象關于y軸對稱”進行判定.

解答 解:(1)由于y=f(x)圖象是由函數(shù)y=f(x+1)的圖象向右平移一個單位得到,故y=f(x)圖象關于直線x=1對稱,正確;
(2)由于函數(shù)y=f(x+1)是偶函數(shù),故y=f(x+1)圖象關于y軸對稱;正確;
(3)函數(shù)y=f(x+1)是偶函數(shù),有f(1+x)=f(1-x)成立,故錯誤;
(4)函數(shù)y=f(x+1)是偶函數(shù),有f(1+x)=f(1-x)成立,正確;
綜上知,正確的序號是(1)(2)(4).
故答案為(1)(2)(4).

點評 本題主要考查了偶函數(shù)的定義、函數(shù)的圖象與圖象變化,同時考查了解決問題、分析問題的能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.將函數(shù)f(x)=2sin(2x-$\frac{π}{3}$)+1的圖象上各點的縱坐標不變,橫坐標縮短為原來的$\frac{1}{2}$,所得圖象的一個對稱中心可能是( 。
A.($\frac{π}{3}$,0)B.($\frac{2π}{3}$,0)C.($\frac{π}{3}$,1)D.($\frac{2π}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ln(x+1)-ax(a∈R).
(Ⅰ)當a=1時,求f(x)的最大值;
(Ⅱ)是否存在實數(shù)a,使得關于x的不等式f(x)<0在(0,+∞)上恒成立?若存在,求出a的取值范圍;若不存在,請說明理由;
(Ⅲ)求證:($\frac{1}{n}$+1)n<e,n∈N*(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知三棱柱ABC-A1B1C1的側棱與底面邊長都相等,A1在底面ABC上的射影為BC的中點,則異面直線AB與CC1所成的角的余弦值為(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{5}}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列函數(shù)中,是偶函數(shù),且在區(qū)間(0,1)上為增函數(shù)的是(  )
A.y=|x|B.y=1-xC.y=$\frac{1}{x}$D.y=-x2+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列說法正確的是( 。
A.命題“若a≥b,則a2≥b2”的逆否命題為“若a2≤b2,則a≤b”
B.“x=1”是“x2-3x+2=0”的必要不充分條件
C.若p∧q為假命題,則p,q均為假命題
D.對于命題p:?x∈R,x2+x+1>0,則¬p:?x0∈R,x02+x0+1≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=x2+2x-3,則f(-5)=( 。
A.-38B.12C.17D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在等比數(shù)列{an}中,已知a1=2,a3=6,那么a5等于( 。
A.8B.10C.18D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知集合A={1,2,3,4},B={y|y=x+1,x∈A},則A∩B={2,3,4}.

查看答案和解析>>

同步練習冊答案