(2012•德州一模)已知在平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組
x+y-5≤0
y≥x
x≥1
確定,若M(x,y)為區(qū)域D上的動(dòng)點(diǎn),點(diǎn)A的坐標(biāo)為(2,3),則z=
OA
OM
的最大值為( 。
分析:利用向量數(shù)量積公式確定目標(biāo)函數(shù),作出平面區(qū)域,即可求得z的最大值.
解答:解:由題意,z=
OA
OM
=2x+3y
作出平面區(qū)域,如圖所示,

直線(xiàn)y=-
2
3
x+
z
3
,當(dāng)縱截距最大時(shí),z最大
x=1
x+y-5=0
,可得x=1,y=4,此時(shí)z最大,最大值為14
故選C.
點(diǎn)評(píng):本題考查線(xiàn)性規(guī)劃知識(shí),考查數(shù)形結(jié)合的數(shù)學(xué)思想,確定平面區(qū)域是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•德州一模)定義運(yùn)算
.
ab
cd
.
=ad-bc
,函數(shù)f(x)=
.
x-12
-xx+3
.
圖象的頂點(diǎn)是(m,n),且k、m、n、r成等差數(shù)列,則k+r=
-9
-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•德州一模)若a=log20.9,b=3-
1
3
,c=(
1
3
)
1
2
則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•德州一模)已知
x+y-5≤0
y≥x
x≥1
,則z=2x+3y的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•德州一模)對(duì)于直線(xiàn)m,n和平面α,β,γ,有如下四個(gè)命題:
(1)若m∥α,m⊥n,則n⊥α
(2)若m⊥α,m⊥n,則n∥α
(3)若α⊥β,γ⊥β,則α∥γ
(4)若m⊥α,m∥n,n?β,則α⊥β
其中真命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•德州一模)已知函數(shù)f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
π
2
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2,△ABC
的面積等于3,求邊長(zhǎng)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案