【題目】已知定義在R上的奇函數(shù)fx),且對任意實(shí)數(shù)x1,x2x1x2時(shí),都有(fx1)﹣fx2))x1x2)<0.若存在實(shí)數(shù)x[3,3],使得不等式fax+fa2x)>0成立,則實(shí)數(shù)a的取值范圍是(  。

A.(﹣3,2B.[3,2]C.(﹣2,1D.[2,1]

【答案】A

【解析】

利用奇函數(shù)性質(zhì)不等式變?yōu)?/span>,條件(fx1)﹣fx2))x1x2)<0說明函數(shù)是減函數(shù),從而得,即,只要小于的最大值即可.

∵對任意實(shí)數(shù)x1x2,x1x2時(shí),都有(fx1)﹣fx2))x1x2)<0.∴函數(shù)是減函數(shù),

是奇函數(shù),∴不等式fax+fa2x)>0可變?yōu)?/span>,即,∴,即,

∵存在實(shí)數(shù)x[3,3],使得不等式fax+fa2x)>0成立,

當(dāng)x[3,3]時(shí),的最大值是6,∴,解是

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為,雙曲線的一條漸近線與軸所成的夾角為,且雙曲線的焦距為.

(1)求橢圓的方程;

(2)設(shè)分別為橢圓的左,右焦點(diǎn),過作直線 (與軸不重合)交橢圓于, 兩點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過點(diǎn)M0-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,邊a、b、c分別是角A、B、C的對邊,且滿足bcosC=(3a-c)cosB

(1)求cosB

(2)若△ABC的面積為4,b=4,求△ABC的周長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】朱世杰是歷史上最偉大的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)”五問中有如下問題:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人.”其大意為“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始每天派出的人數(shù)比前一天多7人.”在該問題中的1864人全部派遣到位需要的天數(shù)為( )

A. 9B. 16C. 18D. 20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cosB+C=1

1)求角A的大;

2)若△ABC的面積S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20172月底,90多所自主招生試點(diǎn)高校將陸續(xù)出臺(tái)2017年自主招生簡章,某校高三年級選取了在期中考試中成績優(yōu)異的100名學(xué)生作為調(diào)查對象,對是否準(zhǔn)備參加2017年的自主招生考試進(jìn)行了問卷調(diào)查,其中準(zhǔn)備參加”“不準(zhǔn)備參加待定的人數(shù)如表:

準(zhǔn)備參加

不準(zhǔn)備參加

待定

男生

30

6

15

女生

15

9

25

(1)在所有參加調(diào)查的同學(xué)中,在三種類型中用分層抽樣的方法抽取20人進(jìn)行座談交流,則在準(zhǔn)備參加”“不準(zhǔn)備參加待定的同學(xué)中應(yīng)各抽取多少人?

(2)準(zhǔn)備參加的同學(xué)中用分層抽樣方法抽取6,從這6人中任意抽取2,求至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中點(diǎn).求證:

(1)DE=DA;

(2)平面BDM⊥平面ECA;

(3)平面DEA⊥平面ECA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】伴隨著智能手機(jī)的深入普及,支付形式日漸多樣化,打破了傳統(tǒng)支付的局限性和壁壘,有研究表明手機(jī)支付的使用比例與人的年齡存在一定的關(guān)系,某調(diào)研機(jī)構(gòu)隨機(jī)抽取了50人,對他們一個(gè)月內(nèi)使用手機(jī)支付的情況進(jìn)行了統(tǒng)計(jì),如下表:

(1)若以“年齡55歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“使用手機(jī)支付”與人的年齡有關(guān);

(2)若從年齡在,內(nèi)的被調(diào)查人中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,記選中的4人中“使用手機(jī)支付”的人數(shù)為.

①求隨機(jī)變量的分布列;

②求隨機(jī)變量的數(shù)學(xué)期望.

參考數(shù)據(jù)如下:

0.05

0.010

0.001

3.841

6.635

10.828

參考格式:,其中

查看答案和解析>>

同步練習(xí)冊答案